SpatialDDS: A Protocol for Real-World Spatial Computing
An open invitation to build a shared bus for spatial data, AI world models, and digital twins.
Version: 1.5 (Draft)
Date: TBD
Author: James Jackson [Open AR Cloud] – james.jackson [at] openarcloud [dot] org
Contents
Part I – Overview
Get oriented with the motivation, core building blocks, practical scenarios, and forward-looking roadmap before diving into the normative material.
- Introduction
- Conventions (Normative)
- IDL Profiles 3.3.1 Topic Naming (Normative) 3.3.4 Coverage Model (Normative)
- Operational Scenarios
- Conclusion
- Future Directions
Part II – Reference
Specifications, identifiers, supporting glossaries, and appendices that implementers can consult while building SpatialDDS solutions.
- SpatialDDS URIs
- Example Manifests
- Glossary of Acronyms
- References
- Appendices
- Appendix A: Core Profile
- Appendix B: Discovery Profile
- Appendix C: Anchor Registry Profile
- Appendix D: Extension Profiles
- Appendix E: Provisional Extension Examples
- Appendix F: SpatialDDS URI Scheme (ABNF)
- Appendix F.X: Discovery Query Expression (ABNF)
- Appendix G: Frame Identifiers (Normative)
- Appendix H: Operational Scenarios & AI World Model Ladder (Informative)
1. Introduction
SpatialDDS is a lightweight, standards-based protocol, built on OMG DDS, for real-time exchange of spatial world models. It is designed as a shared data bus that allows devices, services, and AI agents to publish and subscribe to structured representations of the physical world — from pose graphs and 3D geometry to anchors, semantic detections, and service discovery. By providing a common substrate, SpatialDDS enables applications in robotics, AR/XR, digital twins, and smart cities to interoperate while also supporting new AI-driven use cases such as perception services, neural maps, and planning agents.
At its core, SpatialDDS is defined through IDL profiles that partition functionality into clean modules:
- Core: pose graphs, geometry tiles, anchors, transforms, and blobs.
- Discovery: lightweight announce messages and manifests for services, coverage, anchors, and content.
- Anchors: durable anchors and registry updates for persistent world-locked reference points.
- Extensions: optional domain-specific profiles including the shared Sensing Common base types plus VIO sensors, vision streams, SLAM frontend features, semantic detections, radar tensors, lidar streams, AR+Geo, and provisional Neural/Agent profiles.
This profile-based design keeps the protocol lean and interoperable, while letting communities adopt only the pieces they need.
Reading Guide (Informative)
- Architects & product planners — Start with §1 and §2 to internalize the motivation, shared conventions, and global rules before drilling into profiles.
- Implementers & SDK authors — Focus on Part II plus Appendix A (core IDLs), Appendix B (discovery), Appendix C (anchors), and Appendix D (extensions).
- Routing, filtering, and coverage developers — Read §3.3 (Discovery), §3.3.4 (Coverage Model), and Appendix B/F.X for the binding grammars.
Why DDS?
SpatialDDS builds directly on the OMG Data Distribution Service (DDS), a proven standard for real-time distributed systems. DDS provides:
- Peer-to-peer publish/subscribe with automatic discovery, avoiding centralized brokers.
- Typed data with schema enforcement, versioning, and language bindings.
- Fine-grained QoS for reliability, liveliness, durability, and latency control.
- Scalability across edge devices, vehicles, and cloud backends.
This foundation ensures that SpatialDDS is not just a message format, but a full-fledged, high-performance middleware for spatial computing.
Benefits across domains
- Robotics & Autonomous Vehicles: Share pose graphs, maps, and detections across robots, fleets, and control centers.
- Augmented & Mixed Reality: Fuse VPS results and anchors into persistent, shared spatial contexts; stream geometry and semantics to clients.
- Digital Twins & Smart Cities: Ingest real-time streams of geometry, anchors, and semantics into twin backends, and republish predictive overlays.
- IoT & Edge AI: Integrate lightweight perception services, sensors, and planners that consume and enrich the shared world model.
- AI World Models & Agents: Provide foundation models and AI agents with a structured, typed view of the physical world for perception, reasoning, and planning.
Design Principles
- Keep the wire light SpatialDDS defines compact, typed messages via IDL. Heavy or variable content (meshes, splats, masks, assets) is carried as blobs, referenced by stable IDs. This avoids bloating the bus while keeping payloads flexible.
- Profiles, not monoliths SpatialDDS is organized into modular profiles. Core, Discovery, and Anchors form the foundation; Extension Profiles add domain-specific capabilities. Implementations include only what they need while maintaining interoperability.
- AI-ready, domain-neutral While motivated by SLAM, AR, robotics, and digital twins, the schema is deliberately generic. Agents, foundation models, and AI services can publish and subscribe alongside devices without special treatment.
- Anchors as first-class citizens Anchors provide durable, shared reference points that bridge positioning, mapping, and content attachment. The Anchor Registry makes them discoverable and persistent across sessions.
- Discovery without heaviness Lightweight announce messages plus JSON manifests allow services (like VPS, mapping, or anchor registries) and content/experiences to be discovered at runtime without centralized registries.
- Interoperability with existing standards SpatialDDS is designed to align with and complement related standards such as OGC GeoPose, CityGML/3D Tiles, and Khronos OpenXR. This ensures it can plug into existing ecosystems rather than reinvent them.
Specification Layers (Informative)
| Layer | Purpose | Core Artifacts |
|---|---|---|
| Core Transport | Pub/Sub framing, QoS, reliability | core, discovery IDLs |
| Spatial Semantics | Anchors, poses, transforms, manifests | anchors, geo, manifests |
| Sensing Extensions | Radar, LiDAR, Vision modules | sensing.* profiles |
Architecture Overview & Data Flow
Before diving into identifiers and manifests, it helps to see how SpatialDDS components interlock when a client joins the bus. The typical flow looks like:
High-level layering
SpatialDDS follows the same four-layer model shown in the architecture diagrams:
Applications ↓ use SpatialDDS Profiles ↓ define DDS Topics (typed + QoS) ↓ are described by Discovery & Manifests ↓ reference spatial:// URIs
- Applications (AR, robotics, digital twins, telco sensing, AI runtimes) use SpatialDDS profiles instead of raw DDS topics.
- Profiles define the shared types, semantics, and QoS groupings.
- DDS topics carry typed streams with well-known QoS names.
- Discovery and manifests describe the available streams and their spatial coverage.
- URIs provide stable identifiers for anchors, maps, content, and services.
This textual view matches the layered diagrams used in the presentation.
SpatialDDS URI ──▶ Manifest Resolver ──▶ Discovery Topic ──▶ DDS/Data Streams ──▶ Shared State & Anchors
│ │ │ │ │
(§7) (§8) (§3.3) (§3) (§5 & Appendix C)
- URI → Manifest lookup – Durable SpatialDDS URIs point to JSON manifests that describe services, anchor sets, or content. Clients resolve the URI via HTTPS/TLS or a validated local cache per the SpatialURI Resolution rules (§7.5.5) to fetch capabilities, QoS hints, and connection parameters.
- Discovery → selecting a service – Guided by the manifest and Discovery profile messages, participants determine which SpatialDDS services are available in their vicinity, their coverage areas, and how to engage them.
- Transport → messages on stream or DDS – With a target service selected, the client joins the appropriate DDS domain/partition or auxiliary transport identified in the manifest and begins exchanging typed IDL messages for pose graphs, geometry, or perception streams.
- State updates / anchor resolution – As data flows, participants publish and subscribe to state changes. Anchor registries and anchor delta messages keep spatial references aligned so downstream applications can resolve world-locked content with shared context.
This loop repeats as participants encounter new SpatialDDS URIs—keeping discovery, transport, and shared state synchronized.
SpatialDDS URIs
SpatialDDS URIs give every anchor, service, and content bundle a stable handle that can be shared across devices and transports while still resolving to rich manifest metadata. They are the glue between lightweight on-bus messages and descriptive out-of-band manifests, ensuring that discovery pointers stay durable even as infrastructure moves. Section 6 (SpatialDDS URIs) defines the precise syntax, allowed types, and resolver requirements for these identifiers.
// SPDX-License-Identifier: MIT // SpatialDDS Specification 1.5 (© Open AR Cloud Initiative)
2. Conventions (Normative)
This section centralizes the rules that apply across every SpatialDDS profile. Individual sections reference these shared requirements instead of repeating them. See Appendix A (core), Appendix B (discovery), Appendix C (anchors), and Appendix D (extensions) for the canonical IDL definitions that implement these conventions.
2.1 Orientation & Frame References
- All quaternion fields, manifests, and IDLs SHALL use the
(x, y, z, w)order that aligns with OGC GeoPose. - Frames are represented exclusively with
FrameRef { uuid, fqn }. The UUID is authoritative; the fully qualified name is a human-readable alias. Appendix G defines the authoritative frame model. - Example JSON shape:
"frame_ref": { "uuid": "00000000-0000-4000-8000-000000000000", "fqn": "earth-fixed/map/device" }
2.2 Optional Fields & Discriminated Unions
- Optional scalars, structs, and arrays MUST be guarded by an explicit
has_*boolean immediately preceding the field. - Mutually exclusive payloads SHALL be modeled as discriminated unions; do not overload presence flags to signal exclusivity.
- Schema evolution leverages
@extensibility(APPENDABLE); omit fields only when the IDL version removes them, never as an on-wire sentinel. - See
CovMatrixin Appendix A for the reference discriminated union pattern used for covariance.
2.3 Numeric Validity & NaN Deprecation
NaN,Inf, or other sentinels SHALL NOT signal absence or "unbounded" values; explicit presence flags govern validity.- Fields guarded by
has_*flags are meaningful only when the flag istrue. When the flag isfalse, consumers MUST ignore the payload regardless of its contents. - When a
has_*flag istrue, non-finite numbers MUST be rejected wherever geographic coordinates, quaternions, coverage bounds, or similar numeric payloads appear. - Producers SHOULD avoid emitting non-finite numbers; consumers MAY treat such samples as malformed and drop them.
2.4 Conventions Quick Table (Informative)
| Pattern | Rule |
|---|---|
| Optional fields | All optional values use a has_* flag. |
| NaN/Inf | Never valid; treated as malformed input. |
| Quaternion order | Always (x, y, z, w) GeoPose order. |
| Frames | FrameRef.uuid is authoritative. |
| Ordering | (source_id, seq) is canonical. |
2.5 Canonical Ordering & Identity
These rules apply to any message that carries the trio { stamp, source_id, seq }.
Field semantics
stamp— Event time chosen by the producer.source_id— Stable writer identity within a deployment.seq— Per-source_idstrictly monotonic unsigned 64-bit counter.
Identity & idempotency
- The canonical identity of a sample is the tuple (
source_id,seq). - Consumers MUST treat duplicate tuples as the same logical sample.
- If
seqwraps or resets, the producer MUST changesource_id(or use a profile with an explicit writer epoch).
Ordering rules
- Intra-source — Order solely by
seq. Missing values under RELIABLE QoS indicate loss. - Inter-source merge — Order by (
stamp,source_id,seq) within a bounded window selected by the consumer.
2.6 DDS / IDL Structure
- All SpatialDDS modules conform to OMG IDL 4.2 and DDS-XTypes 1.3.
- Extensibility SHALL be declared via
@extensibility(APPENDABLE). - Consumers MUST ignore unknown appended fields in APPENDABLE types.
- Compound identity SHALL be declared with multiple
@keyannotations. - Field initialization remains a runtime concern and SHALL NOT be encoded in IDL.
- Abridged snippets within the main body are informative; the appendices contain the authoritative IDLs listed above.
2.7 Security Model (Normative)
2.7.1 Threat model (informative background)
SpatialDDS deployments may involve untrusted or partially trusted networks and intermediaries. Threats include: - Spoofing: malicious participants advertising fake services or content. - Tampering: modification of messages, manifests, or blob payloads in transit. - Replay: re-sending previously valid messages (e.g., ANNOUNCE, responses) outside their intended validity window. - Unauthorized access: clients subscribing to sensitive streams or publishing unauthorized updates. - Privacy leakage: exposure of user location, sensor frames, or inferred trajectories.
2.7.2 Trust boundaries
SpatialDDS distinguishes among: - Local transport fabric (e.g., DDS domain): participants may be on a shared L2/L3 network, but not necessarily trusted. - Resolution channels (e.g., HTTPS retrieval or local cache): used to fetch manifests and referenced resources. - Device/app policy: the client’s local trust store and decision logic.
2.7.3 Normative requirements
- Service authenticity. A client MUST authenticate the authority of a
spatialdds://URI (or the service/entity that advertises it) before trusting any security-sensitive content derived from it (e.g., localization results, transforms, anchors, content attachments). - Integrity. When security is enabled by deployment policy or indicated via
auth_hint, clients MUST reject data that fails integrity verification. - Authorization. When security is enabled, services MUST enforce authorization for publish/subscribe operations that expose or modify sensitive spatial state (e.g., anchors, transforms, localization results, raw sensor frames).
- Confidentiality. Services SHOULD protect confidentiality for user-associated location/sensor payloads when transmitted beyond a physically trusted local network.
- Discovery trust. Clients MUST NOT treat Discovery/ANNOUNCE messages as sufficient proof of service authenticity on their own. ANNOUNCE may be used for bootstrapping only when accompanied by one of: (a) transport-level security that authenticates the publisher (e.g., DDS Security), or (b) authenticated retrieval and verification of an authority-controlled artifact (e.g., a manifest fetched over HTTPS/TLS, or a signed manifest) that binds the service identity to the advertised topics/URIs.
2.7.4 Validity and replay considerations
Implementations SHOULD enforce TTL and timestamps to mitigate replay. Where TTL exists (e.g., in Discovery messages), recipients SHOULD discard messages outside the declared validity interval.
2.7.5 DDS Security Binding (Normative)
SpatialDDS deployments that require authentication, authorization, integrity, or confidentiality over DDS MUST use OMG DDS Security.
Minimum conformance profile: - Authentication: PKI-based authentication as defined by DDS Security. - Access control: governance and permissions documents configured per DDS Security. - Cryptographic protection: when confidentiality or integrity is required by policy, endpoints MUST enable DDS Security cryptographic plugins to provide message protection.
Operational mapping (non-exhaustive): - Participants join a DDS Domain; security configuration applies to DomainParticipants and topics as governed by DDS Security governance rules. - Discovery/ANNOUNCE messages that convey service identifiers, manifest URIs, or access hints SHOULD be protected when operating on untrusted networks.
Interoperability note (informative): This specification does not redefine DDS Security. Implementations should use vendor-compatible DDS Security configuration mechanisms.
// SPDX-License-Identifier: MIT // SpatialDDS Specification 1.5 (© Open AR Cloud Initiative)
3. IDL Profiles
The SpatialDDS IDL bundle defines the schemas used to exchange real-world spatial data over DDS. It is organized into complementary profiles: Core, which provides the backbone for pose graphs, geometry, and geo-anchoring; Discovery, which enables lightweight announcements of services, coverage, anchors, and content; and Anchors, which adds support for publishing and updating sets of durable world-locked anchors. Together, these profiles give devices, services, and applications a common language for building, sharing, and aligning live world models—while staying codec-agnostic, forward-compatible, and simple enough to extend for domains such as robotics, AR/XR, IoT, and smart cities.
See §2 Conventions for global normative rules.
3.1 IDL Profile Versioning & Negotiation (Normative)
SpatialDDS uses semantic versioning tokens of the form name@MAJOR.MINOR.
- MAJOR increments for breaking schema or wire changes.
- MINOR increments for additive, compatible changes.
Identifier conventions: Profile tokens use name@MAJOR.MINOR (e.g., core@1.5). Module identifiers use spatial.<profile>/MAJOR.MINOR (e.g., spatial.core/1.5). These are canonically related: core@1.5 ⇔ spatial.core/1.5.
Participants advertise supported ranges via caps.supported_profiles (discovery) and manifest capabilities blocks. Consumers select the highest compatible minor within any shared major. Backward-compatibility clauses from 1.3 are retired; implementations only negotiate within their common majors. SpatialDDS 1.5 uses a single canonical quaternion order (x, y, z, w) across manifests, discovery payloads, and IDL messages.
3.2 Core SpatialDDS
The Core profile defines the essential building blocks for representing and sharing a live world model over DDS. It focuses on a small, stable set of concepts: pose graphs, 3D geometry tiles, blob transport for large payloads, and geo-anchoring primitives such as anchors, transforms, and simple GeoPoses. The design is deliberately lightweight and codec-agnostic: tiles reference payloads but do not dictate mesh formats, and anchors define stable points without tying clients to a specific localization method. All quaternion fields follow the OGC GeoPose component order (x, y, z, w) so orientation data can flow between GeoPose-aware systems without reordering. By centering on graph + geometry + anchoring, the Core profile provides a neutral foundation that can support diverse pipelines across robotics, AR, IoT, and smart city contexts.
Blob Reassembly (Normative)
Blob payloads are transported as BlobChunk sequences. Consumers MUST be prepared for partial delivery and SHOULD apply a per-blob timeout window based on expected rate and total_chunks.
- Timeout guidance: Consumers SHOULD apply a per-blob timeout of at least
2 × (total_chunks / expected_rate)seconds when an expected rate is known. - Failure handling: If all chunks have not arrived within this window under RELIABLE QoS, the consumer SHOULD discard the partial blob and MAY re-request it via
SnapshotRequest. - BEST_EFFORT behavior: Under BEST_EFFORT QoS, consumers MUST NOT assume complete delivery and SHOULD treat blobs as opportunistic.
- Memory pressure: Consumers MAY discard partial blobs early under memory pressure, but MUST NOT treat them as valid payloads.
Frame Identifiers (Reference)
SpatialDDS uses structured frame references via the FrameRef { uuid, fqn } type.
See Appendix G Frame Identifiers (Informative Reference) for the complete definition and naming rules.
Each Transform expresses a pose that maps coordinates from the from frame into the to frame (parent → child).
3.3 Discovery
Discovery is how SpatialDDS peers find each other, advertise what they publish, and select compatible streams. Think of it as a built-in directory that rides the same bus: nodes announce, others filter and subscribe.
How it works (at a glance)
- Announce — each node periodically publishes an announcement with capabilities and topics.
- Query — clients publish simple filters (by profile version, type, QoS) to narrow results.
- Select — clients subscribe to chosen topics; negotiation picks the highest compatible minor per profile.
3.3.0 Discovery Layers & Bootstrap (Normative)
SpatialDDS distinguishes two discovery layers:
- Layer 1 — Network Bootstrap: how a device discovers that a SpatialDDS DDS domain exists and obtains connection parameters. This is transport and access-network dependent.
- Layer 2 — On-Bus Discovery: how a device, once connected to a DDS domain, discovers services, coverage, and streams. This is what the Discovery profile defines.
Layer 1 mechanisms deliver a Bootstrap Manifest that provides the parameters needed to transition to Layer 2.
Bootstrap Manifest (Normative)
A bootstrap manifest is a small JSON document resolved by Layer 1 mechanisms:
{
"spatialdds_bootstrap": "1.5",
"domain_id": 42,
"initial_peers": [
"udpv4://192.168.1.100:7400",
"udpv4://10.0.0.50:7400"
],
"partitions": ["venue/museum-west"],
"discovery_topic": "spatialdds/discovery/announce/v1",
"manifest_uri": "spatialdds://museum.example.org/west/service/discovery",
"auth": {
"method": "none"
}
}
Field definitions
| Field | Required | Description |
|---|---|---|
spatialdds_bootstrap |
REQUIRED | Bootstrap schema version (e.g., "1.5") |
domain_id |
REQUIRED | DDS domain ID to join |
initial_peers |
REQUIRED | One or more DDS peer locators for initial discovery |
partitions |
OPTIONAL | DDS partition(s) to join. Empty or absent means default partition. |
discovery_topic |
OPTIONAL | Override for the well-known announce topic. Defaults to spatialdds/discovery/announce/v1. |
manifest_uri |
OPTIONAL | A spatialdds:// URI for the deployment's root manifest. |
auth |
OPTIONAL | Authentication hint. method is one of "none", "dds-security", "token". |
Normative rules
domain_idMUST be a valid DDS domain ID (0–232).initial_peersMUST contain at least one locator. Locator format follows the DDS implementation's peer descriptor syntax.- Consumers SHOULD attempt all listed peers and use the first that responds.
- The bootstrap manifest is a discovery aid, not a security boundary. Deployments requiring authentication MUST use DDS Security or an equivalent transport-level mechanism.
Well-Known HTTPS Path (Normative)
Clients MAY fetch the bootstrap manifest from:
https://{authority}/.well-known/spatialdds
The response MUST be application/json using the bootstrap manifest schema. Servers SHOULD set Cache-Control headers appropriate to their deployment (e.g., max-age=300).
Note: The bootstrap path /.well-known/spatialdds and the resolver metadata path /.well-known/spatialdds-resolver serve distinct functions and MAY coexist on the same authority. The bootstrap path returns a Bootstrap Manifest (this section), while the resolver path returns resolver metadata for URI resolution (§7.5.2).
DNS-SD Binding (Normative)
DNS-SD is the recommended first binding for local bootstrap.
Service type: _spatialdds._udp
TXT record keys
| Key | Maps to | Example |
|---|---|---|
ver |
spatialdds_bootstrap |
1.5 |
did |
domain_id |
42 |
part |
partitions (comma-separated) |
venue/museum-west |
muri |
manifest_uri |
spatialdds://museum.example.org/west/service/discovery |
Resolution flow
- Device queries for
_spatialdds._udp.local(mDNS) or_spatialdds._udp.<domain>(wide-area DNS-SD). - SRV record provides host and port for the initial DDS peer.
- TXT record provides domain ID, partitions, and optional manifest URI.
- Device constructs a bootstrap manifest from the SRV + TXT data and joins the DDS domain.
- On-bus Discovery (Layer 2) takes over.
Normative rules
didis REQUIRED in the TXT record.- The SRV target and port MUST resolve to a reachable DDS peer locator.
- If
muriis present, clients SHOULD resolve it after joining the domain to obtain full deployment metadata.
Other Bootstrap Mechanisms (Informative)
- DHCP: vendor-specific option carrying a URL to the bootstrap manifest.
- QR / NFC / BLE beacons: encode a
spatialdds://URI or direct URL to the bootstrap manifest. - Mobile / MEC: edge discovery APIs provide a URL to the bootstrap manifest.
Complete Bootstrap Chain (Informative)
Access Network Bootstrap DDS Domain On-Bus Discovery
│ │ │ │
│ WiFi/5G/BLE/QR │ │ │
├─────────────────────► │ │ │
│ │ DNS-SD / HTTPS / │ │
│ │ .well-known lookup │ │
│ ├─────────────────────► │ │
│ │ Bootstrap Manifest │ │
│ │ (domain_id, peers, │ │
│ │ partitions) │ │
│ │ ◄─────────────────────┤ │
│ │ │ Join DDS domain │
│ │ ├─────────────────────► │
│ │ │ Subscribe to │
│ │ │ .../announce/v1 │
│ │ │ Receive Announce │
│ │ │ messages │
│ │ │ Issue CoverageQuery │
│ │ │ Select streams │
│ │ │ Begin operation │
Key messages (abridged IDL)
(Abridged IDL — see Appendix B for full definitions.)
// Message shapes shown for orientation only
@extensibility(APPENDABLE) struct ProfileSupport { string name; uint32 major; uint32 min_minor; uint32 max_minor; boolean preferred; }
@extensibility(APPENDABLE) struct Capabilities { sequence<ProfileSupport,64> supported_profiles; sequence<string,32> preferred_profiles; sequence<FeatureFlag,64> features; }
@extensibility(APPENDABLE) struct TopicMeta { string name; string type; string version; string qos_profile; float32 target_rate_hz; uint32 max_chunk_bytes; }
@extensibility(APPENDABLE) struct Announce {
// ... node identity, endpoints ...
Capabilities caps; // profiles, preferences, features
sequence<TopicMeta,128> topics; // typed topics offered by this node
}
@extensibility(APPENDABLE) struct CoverageFilter {
sequence<string,16> type_in;
sequence<string,16> qos_profile_in;
sequence<string,16> module_id_in;
}
@extensibility(APPENDABLE) struct CoverageQuery {
// minimal illustrative fields
boolean has_filter;
CoverageFilter filter; // preferred in 1.5
string expr; // deprecated in 1.5; Appendix F.X grammar
string reply_topic; // topic to receive results
string query_id; // correlate request/response
}
The expression syntax is retained for legacy deployments and defined in Appendix F.X; `expr` is deprecated in 1.5 in favor of `filter`.
@extensibility(APPENDABLE) struct CoverageResponse {
string query_id;
sequence<Announce,256> results;
string next_page_token;
}
Minimal examples (JSON)
Announce (capabilities + topics)
{
"caps": {
"supported_profiles": [
{ "name": "core", "major": 1, "min_minor": 0, "max_minor": 3 },
{ "name": "discovery", "major": 1, "min_minor": 1, "max_minor": 2 }
],
"preferred_profiles": ["discovery@1.2"],
"features": ["blob.crc32"]
},
"topics": [
{ "name": "spatialdds/perception/cam_front/video_frame/v1", "type": "video_frame", "version": "v1", "qos_profile": "VIDEO_LIVE" },
{ "name": "spatialdds/perception/radar_1/radar_tensor/v1", "type": "radar_tensor", "version": "v1", "qos_profile": "RADAR_RT" }
]
}
Query + Response
{
"query_id": "q1",
"has_filter": true,
"filter": {
"type_in": ["radar_tensor"],
"qos_profile_in": [],
"module_id_in": ["spatial.discovery/1.4", "spatial.discovery/1.5"]
},
"expr": "",
"reply_topic": "spatialdds/discovery/response/q1",
"stamp": { "sec": 1714070400, "nsec": 0 },
"ttl_sec": 30
}
{ "query_id": "q1", "results": [ { "caps": { "supported_profiles": [ { "name": "discovery", "major": 1, "min_minor": 1, "max_minor": 2 } ] }, "topics": [ { "name": "spatialdds/perception/radar_1/radar_tensor/v1", "type": "radar_tensor", "version": "v1", "qos_profile": "RADAR_RT" } ] } ], "next_page_token": "" }
Norms & filters
- Announces MUST include
caps.supported_profiles; peers choose the highest compatible minor within a shared major. - Each advertised topic MUST declare
name,type,version, andqos_profileper Topic Identity (§3.3.1); optional throughput hints (target_rate_hz,max_chunk_bytes) are additive. - Discovery topics SHALL restrict
typeto {geometry_tile,video_frame,radar_tensor,seg_mask,desc_array},versiontov1, andqos_profileto {GEOM_TILE,VIDEO_LIVE,RADAR_RT,SEG_MASK_RT,DESC_BATCH}. caps.preferred_profilesis an optional tie-breaker within the same major.caps.featurescarries namespaced feature flags; unknown flags MUST be ignored.FeatureFlagis a struct (not a raw string) to allow future appended fields (e.g., version or parameters) without breaking wire compatibility.CoverageQuery.filterprovides structured matching fortype,qos_profile, andmodule_id.- Empty sequences in
CoverageFiltermean “match all” for that field. - When multiple filter fields are populated, they are ANDed; a result MUST match at least one value in every non-empty sequence.
- Version range matching stays in profile negotiation (
supported_profileswithmin_minor/max_minor), not in coverage queries. CoverageQuery.expris deprecated in 1.5. Ifhas_filteris true, responders MUST ignoreexpr.- Responders page large result sets via
next_page_token; every response MUST echo the caller’squery_id.
Pagination Contract (Normative)
- Opacity. Page tokens are opaque strings produced by the responder. Consumers MUST NOT parse, construct, or modify them.
- Consistency. Results are best-effort. Pages may include duplicates or miss nodes that arrived/departed between pages. Consumers SHOULD deduplicate by
service_id. - Expiry. Responders SHOULD honor page tokens for at least
ttl_secseconds from the originating query’sstamp. After expiry, responders MAY return an empty result set rather than an error. - Termination. An empty string in
next_page_tokenmeans no further pages remain. - Page size. Responders choose page size. Consumers MUST accept any non-zero page size.
Announce Lifecycle (Normative)
- Departure: A node that leaves the bus gracefully SHOULD publish a
Departmessage. Consumers MUST remove the correspondingservice_idfrom their local directory upon receivingDepart.Departdoes not replace TTL-based expiry. - Staleness: Consumers SHOULD discard Announce samples where
now - stamp > 2 * ttl_sec. - Re-announce cadence: Producers SHOULD re-announce at intervals no greater than
ttl_sec / 2to prevent premature expiry. - Rate limiting: Producers SHOULD NOT re-announce more frequently than once per second unless capabilities, coverage, or topics have changed. Consumers MAY rate-limit processing per
service_id.
Well-Known Discovery Topics (Normative)
| Message Type | Topic Name |
|---|---|
Announce |
spatialdds/discovery/announce/v1 |
Depart |
spatialdds/discovery/depart/v1 |
CoverageQuery |
spatialdds/discovery/query/v1 |
CoverageHint |
spatialdds/discovery/coverage_hint/v1 |
ContentAnnounce |
spatialdds/discovery/content/v1 |
CoverageResponse uses the reply_topic specified in the originating CoverageQuery.
QoS defaults for discovery topics
| Topic | Reliability | Durability | History |
|---|---|---|---|
announce |
RELIABLE | TRANSIENT_LOCAL | KEEP_LAST(1) per key |
depart |
RELIABLE | VOLATILE | KEEP_LAST(1) per key |
query |
RELIABLE | VOLATILE | KEEP_ALL |
coverage_hint |
BEST_EFFORT | VOLATILE | KEEP_LAST(1) per key |
content |
RELIABLE | TRANSIENT_LOCAL | KEEP_LAST(1) per key |
CoverageResponse reply topic QoS (Normative)
The writer for reply_topic SHOULD use RELIABLE, VOLATILE, KEEP_ALL.
The querier SHOULD create a matching reader before publishing the CoverageQuery.
Discovery trust (Normative)
ANNOUNCE messages provide discovery convenience and are not, by themselves, authoritative. Clients MUST apply the Security Model requirements in §2.7 before trusting advertised URIs, topics, or services.
Asset references
Discovery announcements and manifests share a single AssetRef structure composed of URI, media type, integrity hash, and optional MetaKV metadata bags. AssetRef and MetaKV are normative types for asset referencing in the Discovery profile.
auth_hint (Normative)
auth_hint provides a machine-readable hint describing how clients can authenticate and authorize access to the service or resolve associated resources. auth_hint does not replace deployment policy; clients may enforce stricter requirements than indicated.
- If
auth_hintis empty or omitted, it means “no authentication hint provided.” Clients MUST fall back to deployment policy (e.g., DDS Security configuration, trusted network assumptions, or authenticated manifest retrieval). - If
auth_hintis present, it MUST be interpreted as one or more auth URIs encoded as a comma-separated list.
Grammar (normative):
auth_hint := auth-uri ("," auth-uri)*
auth-uri := scheme ":" scheme-specific
Required schemes (minimum set):
- ddssec: indicates that the DDS transport uses OMG DDS Security (governance/permissions) for authentication and access control.
- Example: ddssec:profile=default
- Example: ddssec:governance=spatialdds://auth.example/…/governance.xml;permissions=spatialdds://auth.example/…/permissions.xml
- oauth2: indicates OAuth2-based access for HTTP(S) resolution or service APIs.
- Example: oauth2:issuer=https://auth.example.com;aud=spatialdds;scope=vps.localize
- mtls: indicates mutual TLS for HTTP(S) resolution endpoints.
- Example: mtls:https://resolver.example.com
Client behavior (normative):
- A client MUST treat auth_hint as advisory configuration and MUST still validate the authenticity of the service/authority via a trusted mechanism (DDS Security identity or authenticated artifact retrieval).
- If the client does not support any scheme listed in auth_hint, it MUST fail gracefully and report “unsupported authentication scheme.”
Examples (informative):
- auth_hint="ddssec:profile=city-austin"
- auth_hint="ddssec:governance=spatialdds://city.example/…/gov.xml,oauth2:issuer=https://auth.city.example;aud=spatialdds;scope=catalog.read"
What fields mean (quick reference)
| Field | Use |
|---|---|
caps.supported_profiles |
Version ranges per profile. Peers select the highest compatible minor within a shared major. |
caps.preferred_profiles |
Optional tie-breaker hint (only within a major). |
caps.features |
Optional feature flags (namespaced strings). Unknown flags can be ignored. |
topics[].type / version / qos_profile |
Topic Identity keys used to filter and match streams; see the allowed sets above. |
reply_topic, query_id |
Allows asynchronous, paged responses and correlation. |
Practical notes
- Announce messages stay small and periodic; re-announce whenever capabilities, coverage, or topics change.
- Queries are stateless filters. Responders may page through results; clients track
next_page_tokenuntil empty. - Topic names follow
spatialdds/<domain>/<stream>/<type>/<version>per §3.3.1; filter bytypeandqos_profileinstead of parsing payloads. - Negotiation is automatic once peers see each other’s
supported_profiles; emit diagnostics likeNO_COMMON_MAJOR(name)when selection fails.
Summary
Discovery keeps the wire simple: nodes publish what they have, clients filter for what they need, and the system converges on compatible versions. Use typed topic metadata to choose streams, rely on capabilities to negotiate versions without additional application-level handshakes, and treat discovery traffic as the lightweight directory for every SpatialDDS deployment.
3.3.1 Topic Naming (Normative)
SpatialDDS topics are identified by a structured name, a type, a version, and a declared Quality-of-Service (QoS) profile. Together these define both what a stream carries and how it behaves on the wire.
Each topic follows this pattern:
spatialdds/<domain>/<stream>/<type>/<version>
| Segment | Meaning | Example |
|----------|----------|----------|
| <domain> | Logical app domain | perception |
| <stream> | Sensor or stream ID | cam_front |
| <type> | Registered data type | video_frame |
| <version> | Schema or message version | v1 |
Example
{
"name": "spatialdds/perception/radar_1/radar_tensor/v1",
"type": "radar_tensor",
"version": "v1",
"qos_profile": "RADAR_RT"
}
3.3.2 Typed Topics Registry
| Type | Typical Payload | Notes |
|---|---|---|
geometry_tile |
3D tile data (GLB, 3D Tiles) | Large, reliable transfers |
video_frame |
Encoded video/image | Real-time camera streams |
radar_tensor |
N-D float/int tensor | Structured radar data |
seg_mask |
Binary or PNG mask | Frame-aligned segmentation |
desc_array |
Feature descriptor sets | Vector or embedding batches |
These registered types ensure consistent topic semantics without altering wire framing. New types can be registered additively through this table or extensions.
Implementations defining custom type and qos_profile values SHOULD follow the naming pattern (myorg.depth_frame, DEPTH_LIVE) and document their DDS QoS mapping.
3.3.3 QoS Profiles
QoS profiles define delivery guarantees and timing expectations for each topic type.
| Profile | Reliability | Ordering | Typical Deadline | Use Case |
|---|---|---|---|---|
GEOM_TILE |
Reliable | Ordered | 200 ms | 3D geometry, large tile data |
VIDEO_LIVE |
Best-effort | Ordered | 33 ms | Live video feeds |
VIDEO_ARCHIVE |
Reliable | Ordered | 200 ms | Replay or stored media |
RADAR_RT |
Partial | Ordered | 20 ms | Real-time radar tensors |
SEG_MASK_RT |
Best-effort | Ordered | 33 ms | Live segmentation masks |
DESC_BATCH |
Reliable | Ordered | 100 ms | Descriptor or feature batches |
Notes
- Each topic advertises its
qos_profileduring discovery. - Profiles capture trade-offs between latency, reliability, and throughput.
- Implementations may tune low-level DDS settings, but the profile name is canonical.
- Mixing unrelated data (e.g., radar + video) in a single QoS lane is discouraged.
Discovery and Manifest Integration
Every Announce.topics[] entry and manifest topic reference SHALL include:
- type — one of the registered type values
- version — the schema or message version
- qos_profile — one of the standard or extended QoS names
For each advertised topic, type, version, and qos_profile MUST be present and MUST either match a registered value in this specification or a documented deployment-specific extension.
Consumers use these three keys to match and filter streams without inspecting payload bytes. Brokers and routers SHOULD isolate lanes by (topic, stream_id, qos_profile) to avoid head-of-line blocking.
3.3.4 Coverage Model (Normative)
coverage_frame_refis the canonical frame for an announcement.CoverageElement.frame_refMAY override it, but SHOULD be used sparingly (e.g., mixed local frames). If absent, consumers MUST usecoverage_frame_ref.- When
coverage_eval_timeis present, consumers SHALL evaluate any referenced transforms at that instant before interpretingcoverage_frame_ref. global == truemeans worldwide coverage regardless of regional hints. Producers MAY omitbbox,geohash, orelementsin that case.- When
global == false, producers MAY supply any combination of regional hints; consumers SHOULD treat the union of all regions as the effective coverage. - Manifests MAY provide any combination of
bbox,geohash, andelements. Discovery coverage MAY omitgeohashand rely solely onbboxandaabb. Consumers SHALL treat all hints consistently according to the Coverage Model. - When
has_bbox == true,bboxMUST contain finite coordinates; consumers SHALL reject non-finite values. Whenhas_bbox == false, consumers MUST ignorebboxentirely. Same rules apply tohas_aabbandaabb. - Earth-fixed frames (
fqnrooted atearth-fixed) encode WGS84 longitude/latitude/height. Local frames MUST reference anchors or manifests that describe the transform back to an earth-fixed root (Appendix G). - Discovery announces and manifests share the same coverage semantics and flags.
CoverageQueryresponders SHALL apply these rules consistently when filtering or paginating results. - See §2 Conventions for global normative rules.
Earth-fixed roots and local frames
For global interoperability, SpatialDDS assumes that earth-fixed frames (e.g., WGS84 longitude/latitude/height) form the root of the coverage hierarchy. Local frames (for devices, vehicles, buildings, or ships) may appear in coverage elements, but if the coverage is intended to be globally meaningful, these local frames must be relatable to an earth-fixed root through declared transforms or manifests.
Implementations are not required to resolve every local frame at runtime, but when they do, the resulting coverage must be interpretable in an earth-fixed reference frame.
Coverage Evaluation Pseudocode (Informative)
if coverage.global:
regions = WORLD
else:
regions = union(bbox, geohash, elements[*].aabb)
frame = coverage_frame_ref unless element.frame_ref present
evaluate transforms at coverage_eval_time if present
Implementation Guidance (Non-Normative)
- No change to on-wire framing — this metadata lives at the discovery layer.
- Named QoS profiles simplify cross-vendor interoperability and diagnostics.
- For custom types, follow the same naming pattern and document new QoS presets.
- All examples and tables herein are additive.
Discovery recipe (tying the examples together)
- Announce — the producer sends
Announce(see JSON example above) to advertisecapsandtopics. - CoverageQuery — the consumer issues a
CoverageQuery(see query JSON) to filter by profile, topic type, or QoS. - CoverageResponse — the Discovery producer replies with
CoverageResponse(see response JSON), returning results plus an optionalnext_page_tokenfor pagination.
3.4 Anchors
The Anchors profile provides a structured way to share and update collections of durable, world-locked anchors. While Core includes individual GeoAnchor messages, this profile introduces constructs such as AnchorSet for publishing bundles (e.g., a venue’s anchor pack) and AnchorDelta for lightweight updates. This makes it easy for clients to fetch a set of anchors on startup, stay synchronized through incremental changes, and request full snapshots when needed. Anchors complement VPS results by providing the persistent landmarks that make AR content and multi-device alignment stable across sessions and users.
3.5 Profiles Summary
The complete SpatialDDS IDL bundle is organized into the following profiles:
- Core Profile
Fundamental building blocks: pose graphs, geometry tiles, anchors, transforms, and blob transport. - Discovery Profile Lightweight announce messages plus active query/response bindings for services, coverage areas, anchors, and spatial content or experiences.
- Anchors Profile
Durable anchors and the Anchor Registry, enabling persistent world-locked reference points.
Together, Core, Discovery, and Anchors form the foundation of SpatialDDS, providing the minimal set required for interoperability.
- Extensions
- Sensing Module Family:
sensing.commondefines shared frame metadata, calibration, QoS hints, and codec descriptors. Radar, lidar, and vision profiles inherit those types and layer on their minimal deltas—RadDetectionSet/RadTensor/beam_paramsfor radar,PointCloud/ScanBlock/return_typefor lidar, andImageFrame/SegMask/FeatureArrayfor vision. Deployments MAY import the specialized profiles independently but SHOULD declare thesensing.common@1.xdependency when they do. - VIO Profile: Raw and fused IMU and magnetometer samples for visual-inertial pipelines.
- SLAM Frontend Profile: Features, descriptors, and keyframes for SLAM and SfM pipelines.
- Semantics Profile: 2D and 3D detections for AR occlusion, robotics perception, and analytics.
- AR+Geo Profile: GeoPose, frame transforms, and geo-anchoring structures for global alignment and persistent AR content.
- Provisional Extensions (Optional)
- Neural Profile: Metadata for neural fields (e.g., NeRFs, Gaussian splats) and optional view-synthesis requests.
- Agent Profile: Generic task and status messages for AI agents and planners.
Together, these profiles give SpatialDDS the flexibility to support robotics, AR/XR, digital twins, IoT, and AI world models—while ensuring that the wire format remains lightweight, codec-agnostic, and forward-compatible.
Profile Matrix (SpatialDDS 1.5)
- spatial.core/1.5
- spatial.discovery/1.5
- spatial.anchors/1.5
- spatial.manifest/1.5 (manifest schema profile for SpatialDDS 1.5)
- spatial.argeo/1.5
- spatial.sensing.common/1.5
- spatial.sensing.rad/1.5
- spatial.sensing.lidar/1.5
- spatial.sensing.vision/1.5
- spatial.slam_frontend/1.5
- spatial.vio/1.5
- spatial.semantics/1.5
The Sensing module family keeps sensor data interoperable: sensing.common unifies pose stamps, calibration blobs, ROI negotiation, and quality reporting. Radar, lidar, and vision modules extend that base without redefining shared scaffolding, ensuring multi-sensor deployments can negotiate payload shapes and interpret frame metadata consistently.
4. Operational Scenarios: From SLAM to AI World Models
Informative narratives, mermaid diagrams, and long-form JSON walkthroughs now live in Appendix H. See Appendix H for the full “local → shared → global → AI” ladder and device-to-AI examples.
5. Conclusion
SpatialDDS provides a lightweight, standards-based framework for exchanging real-world spatial data over DDS. By organizing schemas into modular profiles — with Core, Discovery, and Anchors as the foundation and Extensions adding domain-specific capabilities — it supports everything from SLAM pipelines and AR clients to digital twins, smart city infrastructure, and AI-driven world models. Core elements such as pose graphs, geometry tiles, anchors, and discovery give devices and services a shared language for building and aligning live models of the world, while provisional extensions like Neural and Agent point toward richer semantics and autonomous agents. Taken together, SpatialDDS positions itself as a practical foundation for real-time spatial computing—interoperable, codec-agnostic, and ready to serve as the data bus for AI and human experiences grounded in the physical world.
6. Future Directions
While SpatialDDS establishes a practical baseline for real-time spatial computing, several areas invite further exploration:
- Reference Implementations
Open-source libraries and bridges to existing ecosystems (e.g., ROS 2, OpenXR, OGC APIs) would make it easier for developers to adopt SpatialDDS in robotics, AR, and twin platforms. - Semantic Enrichment
Extending beyond 2D/3D detections, future work could align with ontologies and scene graphs to enable richer machine-readable semantics for AI world models and analytics. - Neural Integration
Provisional support for neural fields (NeRFs, Gaussian splats) could mature into a stable profile, ensuring consistent ways to stream and query neural representations across devices and services. - Agent Interoperability
Lightweight tasking and coordination schemas could evolve into a standard Agent profile, supporting multi-agent planning and human-AI collaboration at scale. - Standards Alignment
Ongoing coordination with OGC, Khronos, W3C, and GSMA initiatives will help ensure SpatialDDS complements existing geospatial, XR, and telecom standards rather than duplicating them.
Together, these directions point toward a future where SpatialDDS is not just a protocol but a foundation for an open, interoperable ecosystem of real-time world models.
We invite implementers, researchers, and standards bodies to explore SpatialDDS, contribute extensions, and help shape it into a shared backbone for real-time spatial computing and AI world models.
7. SpatialDDS URIs
7.1 Why SpatialDDS URIs matter
SpatialDDS URIs are the shorthand that lets participants talk about anchors, content, and services without exchanging the full manifests up front. They bridge human concepts—"the anchor in Hall 1" or "the localization service for Midtown"—with machine-readable manifests that deliver the precise data, coordinate frames, and capabilities needed later in the flow.
7.2 Key ingredients
Every SpatialDDS URI names four ideas:
- Authority – who owns the namespace and keeps the identifiers stable.
- Zone – a slice of that authority’s catalog, such as a venue, fleet, or logical shard.
- Type – whether the reference points to an anchor, a bundle of anchors, a piece of content, or a service endpoint.
- Identifier (with optional version) – the specific record the manifest will describe.
The exact tokens and encoding rules are defined by the individual profiles, but at a glance the URIs read like spatialdds://authority/zone/type/id;v=version. Readers only need to recognize which part expresses ownership, scope, semantics, and revision so they can reason about the rest of the system.
Formal syntax is given in Appendix F.
7.3 Working with SpatialDDS URIs
Once a URI is known, clients resolve it according to the SpatialURI Resolution rules (§7.5), including the HTTPS/TLS binding (§7.5.5). The manifest reveals everything the client needs to act: anchor poses, dependency graphs for experiences, or how to reach a service. Because URIs remain lightweight, they are easy to pass around in tickets, QR codes, or discovery topics while deferring the heavier data fetch until runtime.
7.4 Examples
spatialdds://museum.example.org/hall1/anchor/01J8QDFQX3W9X4CEX39M9ZP6TQ
spatialdds://city.example.net/downtown/service/01HA7M6XVBTF6RWCGN3X05S0SM;v=2024-q2
spatialdds://studio.example.com/stage/content/01HCQF7DGKKB3J8F4AR98MJ6EH
In the manifest samples later in this specification, each of these identifiers expands into a full JSON manifest. Reviewing those examples shows how a single URI flows from a discovery payload, through manifest retrieval, to runtime consumption.
Authorities SHOULD use DNS hostnames they control to ensure globally unique, delegatable SpatialDDS URIs.
7.5 SpatialURI Resolution (Normative)
This section defines the required baseline mechanism for resolving SpatialDDS URIs to concrete resources (for example, JSON manifests). It does not change any IDL definitions.
7.5.1 Resolution Order (Normative)
When resolving a spatialdds:// URI, a client MUST perform the following steps in order:
- Validate syntax — The URI MUST conform to Appendix F.
- Local cache — If a valid, unexpired cache entry exists, the client MUST use it.
- Advertised resolver — If discovery metadata supplies a resolver endpoint, the client MUST use it.
- HTTPS fallback — The client MUST attempt HTTPS resolution as defined below.
- Failure — If unresolved, the client MUST treat the resolution as failed.
7.5.2 HTTPS Resolution (Required Baseline)
All SpatialDDS authorities MUST support HTTPS-based resolution.
Resolver Metadata (Normative)
Each authority MUST expose the resolver metadata at:
https://{authority}/.well-known/spatialdds-resolver
Minimum response body:
{
"authority": "example.com",
"https_base": "https://example.com/spatialdds/resolve",
"cache_ttl_sec": 300
}
Resolve Request (Normative)
Clients resolve a SpatialURI via:
GET {https_base}?uri={urlencoded SpatialURI}
Example:
GET https://example.com/spatialdds/resolve?uri=spatialdds://example.com/zone:austin/manifest:vps
Resolve Response (Normative)
On success, servers MUST return:
- HTTP
200 OK - The resolved resource body
- A correct
Content-Type - At least one integrity signal (
ETag,Digest, or a checksum field in the body)
7.5.3 Error Handling (Normative)
Servers MUST use standard HTTP status codes:
400invalid URI404not found401/403unauthorized5xxserver error
Clients MUST treat any non-200 response as resolution failure.
7.5.4 Security (Normative)
- HTTPS resolution MUST use TLS.
- Authentication MAY be required when advertised.
- Clients MAY enforce local trust policies.
7.5.5 HTTPS/TLS Binding for URI Resolution (Normative)
- If a
spatialdds://URI is resolved using HTTP(S), the client MUST use HTTPS and MUST validate the server’s TLS identity (WebPKI or pinned keys by deployment policy). - If OAuth2 is used, clients SHOULD present bearer tokens using the standard
Authorization: Bearer <token>header. - Implementations MAY use a local cache for resolution, but cached artifacts MUST be bound to an authenticated origin (e.g., obtained over HTTPS/TLS or validated signature) and MUST respect TTL/expiration.
8. Manifest Schema (Normative)
The manifest schema is versioned as spatial.manifest@MAJOR.MINOR, consistent with the IDL profile scheme.
The manifest schema is defined as the spatial.manifest profile. It uses the same name@MAJOR.MINOR convention as IDL profiles, and spatial.manifest@1.5 is the canonical identifier for this specification.
Manifests describe what a SpatialDDS node or dataset provides: capabilities, coverage, and assets. They are small JSON documents resolved via §7.5 and referenced by discovery announces.
8.1 Common Envelope (Normative)
Every spatial.manifest@1.5 document MUST include the following top-level fields:
| Field | Type | Required | Description |
|---|---|---|---|
id |
string | REQUIRED | Unique manifest identifier. MUST be either a UUID or a valid spatialdds:// URI. |
profile |
string | REQUIRED | MUST be spatial.manifest@1.5. |
rtype |
string | REQUIRED | Resource type: anchor, anchor_set, content, tileset, service, or stream. Determines the required type-specific block. |
caps |
object | OPTIONAL | Capabilities block. When present, MUST follow the same structure as discovery Capabilities. |
coverage |
object | OPTIONAL | Coverage block. When present, MUST follow the Coverage Model (§3.3.4). |
assets |
array | OPTIONAL | Array of AssetRef objects. Each entry MUST include uri, media_type, and hash. |
stamp |
object | OPTIONAL | Publication timestamp { "sec": <int>, "nanosec": <int> }. |
ttl_sec |
integer | OPTIONAL | Cache lifetime hint in seconds. Clients SHOULD NOT use a cached manifest beyond stamp + ttl_sec. |
auth |
object | OPTIONAL | Authentication hints, consistent with auth_hint semantics in §3.3. |
Validation rules (Normative):
- Unknown top-level fields MUST be ignored by consumers (forward compatibility).
profileMUST matchspatial.manifest@1.<minor>where<minor>≥ 5. Consumers SHOULD accept any minor ≥ 5 within major 1.- When
coverageis present, it MUST follow all normative rules from §3.3.4, includinghas_bbox/has_aabbpresence flags and finite coordinate requirements. assets[].hashMUST use the format<algorithm>:<hex>(e.g.,sha256:3af2...).
Envelope example (Informative)
{
"id": "spatialdds://museum.example.org/hall1/anchor/main-entrance",
"profile": "spatial.manifest@1.5",
"rtype": "anchor",
"stamp": { "sec": 1714070400, "nanosec": 0 },
"ttl_sec": 3600
}
8.2 Type-Specific Blocks (Normative)
Each rtype value requires a corresponding top-level object with type-specific content. The key name matches the rtype value.
8.2.1 anchor — Single Anchor Manifest
| Field | Type | Required | Description |
|---|---|---|---|
anchor.anchor_id |
string | REQUIRED | Matches GeoAnchor.anchor_id. |
anchor.geopose |
object | REQUIRED | GeoPose with lat_deg, lon_deg, alt_m, q (x,y,z,w), frame_kind, frame_ref. |
anchor.method |
string | OPTIONAL | Localization method (e.g., Surveyed, GNSS, VisualFix). |
anchor.confidence |
number | OPTIONAL | 0..1. |
anchor.frame_ref |
object | REQUIRED | FrameRef for the anchor's local frame. |
anchor.checksum |
string | OPTIONAL | Integrity hash for the anchor data. |
{
"id": "spatialdds://museum.example.org/hall1/anchor/main-entrance",
"profile": "spatial.manifest@1.5",
"rtype": "anchor",
"anchor": {
"anchor_id": "main-entrance",
"geopose": {
"lat_deg": 37.7934,
"lon_deg": -122.3941,
"alt_m": 12.6,
"q": [0.0, 0.0, 0.0, 1.0],
"frame_kind": "ENU",
"frame_ref": {
"uuid": "fc6a63e0-99f7-445b-9e38-0a3c8a0c1234",
"fqn": "earth-fixed"
}
},
"method": "Surveyed",
"confidence": 0.98,
"frame_ref": {
"uuid": "6c2333a0-8bfa-4b43-9ad9-7f22ee4b0001",
"fqn": "museum/hall1/map"
}
},
"coverage": {
"frame_ref": { "uuid": "ae6f0a3e-7a3e-4b1e-9b1f-0e9f1b7c1a10", "fqn": "earth-fixed" },
"has_bbox": true,
"bbox": [-122.395, 37.793, -122.393, 37.794],
"global": false
},
"stamp": { "sec": 1714070400, "nanosec": 0 },
"ttl_sec": 86400
}
8.2.2 anchor_set — Anchor Bundle Manifest
| Field | Type | Required | Description |
|---|---|---|---|
anchor_set.set_id |
string | REQUIRED | Matches AnchorSet.set_id. |
anchor_set.title |
string | OPTIONAL | Human-readable name. |
anchor_set.provider_id |
string | OPTIONAL | Publishing organization. |
anchor_set.version |
string | OPTIONAL | Set version string. |
anchor_set.anchors |
array | REQUIRED | Array of anchor objects (same schema as anchor block above, without the envelope). |
anchor_set.center_lat |
number | OPTIONAL | Approximate center latitude. |
anchor_set.center_lon |
number | OPTIONAL | Approximate center longitude. |
anchor_set.radius_m |
number | OPTIONAL | Approximate coverage radius in meters. |
8.2.3 service — Service Manifest
| Field | Type | Required | Description |
|---|---|---|---|
service.service_id |
string | REQUIRED | Matches Announce.service_id. |
service.kind |
string | REQUIRED | One of VPS, MAPPING, RELOCAL, SEMANTICS, STORAGE, CONTENT, ANCHOR_REGISTRY, OTHER. |
service.name |
string | OPTIONAL | Human-readable service name. |
service.org |
string | OPTIONAL | Operating organization. |
service.version |
string | OPTIONAL | Service version. |
service.connection |
object | OPTIONAL | DDS connection hints (see below). |
service.topics |
array | OPTIONAL | Array of TopicMeta-shaped objects describing available topics. |
service.connection fields
| Field | Type | Required | Description |
|---|---|---|---|
domain_id |
integer | OPTIONAL | DDS domain ID. |
partitions |
array of string | OPTIONAL | DDS partitions. |
initial_peers |
array of string | OPTIONAL | DDS peer locators. |
{
"id": "spatialdds://city.example.net/downtown/service/vps-main;v=2024-q2",
"profile": "spatial.manifest@1.5",
"rtype": "service",
"service": {
"service_id": "vps-main",
"kind": "VPS",
"name": "Downtown Visual Positioning",
"org": "city.example.net",
"version": "2024-q2",
"connection": {
"domain_id": 42,
"partitions": ["city/downtown"],
"initial_peers": ["udpv4://10.0.1.50:7400"]
},
"topics": [
{ "name": "spatialdds/vps/cam_front/video_frame/v1", "type": "video_frame", "version": "v1", "qos_profile": "VIDEO_LIVE" }
]
},
"caps": {
"supported_profiles": [
{ "name": "core", "major": 1, "min_minor": 0, "max_minor": 5 },
{ "name": "discovery", "major": 1, "min_minor": 0, "max_minor": 5 }
],
"features": ["blob.crc32"]
},
"coverage": {
"frame_ref": { "uuid": "ae6f0a3e-7a3e-4b1e-9b1f-0e9f1b7c1a10", "fqn": "earth-fixed" },
"has_bbox": true,
"bbox": [-122.420, 37.790, -122.410, 37.800],
"global": false
},
"stamp": { "sec": 1714070400, "nanosec": 0 },
"ttl_sec": 3600
}
8.2.4 content — Content / Experience Manifest
| Field | Type | Required | Description |
|---|---|---|---|
content.content_id |
string | REQUIRED | Matches ContentAnnounce.content_id. |
content.title |
string | OPTIONAL | Human-readable title. |
content.summary |
string | OPTIONAL | Brief description. |
content.tags |
array of string | OPTIONAL | Searchable tags. |
content.class_id |
string | OPTIONAL | Content classification. |
content.dependencies |
array of string | OPTIONAL | Array of spatialdds:// URIs required before use. |
content.available_from |
object | OPTIONAL | Time object — content is not valid before this. |
content.available_until |
object | OPTIONAL | Time object — content expires after this. |
8.2.5 tileset — Tileset Manifest
| Field | Type | Required | Description |
|---|---|---|---|
tileset.tileset_id |
string | REQUIRED | Unique tileset identifier. |
tileset.encoding |
string | REQUIRED | Tile encoding (e.g., glTF+Draco, 3DTiles, MPEG-PCC). |
tileset.frame_ref |
object | REQUIRED | FrameRef for the tileset's coordinate frame. |
tileset.version |
string | OPTIONAL | Tileset version. |
tileset.lod_levels |
integer | OPTIONAL | Number of LOD levels. |
tileset.tile_count |
integer | OPTIONAL | Total tile count (informative hint). |
8.2.6 stream — Stream Manifest
| Field | Type | Required | Description |
|---|---|---|---|
stream.stream_id |
string | REQUIRED | Matches the stream_id used in sensing profiles. |
stream.topic |
object | REQUIRED | TopicMeta-shaped object. |
stream.connection |
object | OPTIONAL | Same schema as service.connection. |
8.3 JSON Schema (Normative)
An official JSON Schema for spatial.manifest@1.5 is published at:
https://spatialdds.org/schemas/manifest/1.5/spatial-manifest.schema.json
Manifests MAY include a $schema field pointing to this URL for self-description.
{
"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "https://spatialdds.org/schemas/manifest/1.5/spatial-manifest.schema.json",
"title": "SpatialDDS Manifest 1.5",
"type": "object",
"required": ["id", "profile", "rtype"],
"properties": {
"id": { "type": "string" },
"profile": { "type": "string", "pattern": "^spatial\\.manifest@1\\.[5-9][0-9]*$" },
"rtype": { "type": "string", "enum": ["anchor", "anchor_set", "content", "tileset", "service", "stream"] },
"caps": { "$ref": "#/$defs/Capabilities" },
"coverage": { "$ref": "#/$defs/Coverage" },
"assets": { "type": "array", "items": { "$ref": "#/$defs/AssetRef" } },
"stamp": { "$ref": "#/$defs/Time" },
"ttl_sec": { "type": "integer", "minimum": 0 },
"auth": { "type": "object" }
},
"oneOf": [
{ "properties": { "rtype": { "const": "anchor" } }, "required": ["anchor"] },
{ "properties": { "rtype": { "const": "anchor_set" } }, "required": ["anchor_set"] },
{ "properties": { "rtype": { "const": "service" } }, "required": ["service"] },
{ "properties": { "rtype": { "const": "content" } }, "required": ["content"] },
{ "properties": { "rtype": { "const": "tileset" } }, "required": ["tileset"] },
{ "properties": { "rtype": { "const": "stream" } }, "required": ["stream"] }
],
"additionalProperties": true
}
8.4 Field Notes (Normative)
+ Capabilities (caps) — declares supported profiles and feature flags. Peers use this to negotiate versions.
+ Coverage (coverage) — See §3.3.4 Coverage Model (Normative). Coverage blocks in manifests and discovery announces share the same semantics. See §2 Conventions for global normative rules.
+ Frame identity. The uuid field is authoritative; fqn is a human-readable alias. Consumers SHOULD match frames by UUID and MAY show fqn in logs or UIs. See Appendix G for the full FrameRef model.
+ Assets (assets) — URIs referencing external content. Each has a uri, media_type, and hash.
+ All orientation fields follow the quaternion order defined in §2.1.
+
+### 8.5 Practical Guidance (Informative)
+ Keep manifests small and cacheable; they are for discovery, not bulk metadata.
+ When multiple frames exist, use one manifest per frame for clarity.
+ Use HTTPS, DDS, or file URIs interchangeably — the uri scheme is transport-agnostic.
+ Assets should prefer registered media types for interoperability.
+
+### 8.6 Summary (Informative)
+Manifests give every SpatialDDS resource a compact, self-describing identity. They express what exists, where it is, and how to reach it*.
9. Glossary of Acronyms
AI – Artificial Intelligence
AR – Augmented Reality
DDS – Data Distribution Service (OMG standard middleware)
GSMA – GSM Association (global mobile industry group)
IMU – Inertial Measurement Unit
IoT – Internet of Things
MR – Mixed Reality
MSF – Metaverse Standards Forum
NeRF – Neural Radiance Field (neural representation of 3D scenes)
OGC – Open Geospatial Consortium
OMG – Object Management Group (standards body for DDS)
ROS – Robot Operating System
SfM – Structure from Motion
SLAM – Simultaneous Localization and Mapping
VIO – Visual-Inertial Odometry
VLM – Vision-Language Model
VPS – Visual Positioning Service
VR – Virtual Reality
W3C – World Wide Web Consortium
XR – Extended Reality (umbrella term including AR, VR, MR)
10. References
DDS & Middleware
[1] Object Management Group. Data Distribution Service (DDS) for Real-Time Systems. OMG Standard. Available: https://www.omg.org/spec/DDS
[2] Object Management Group. DDS for eXtremely Resource Constrained Environments (DDS-XRCE). OMG Standard. Available: https://www.omg.org/spec/DDS-XRCE
[3] eProsima. Fast DDS Documentation. Available: https://fast-dds.docs.eprosima.com
[4] Eclipse Foundation. Cyclone DDS. Available: https://projects.eclipse.org/projects/iot.cyclonedds
XR & Spatial Computing
[5] Khronos Group. OpenXR Specification. Available: https://www.khronos.org/openxr
[6] Open Geospatial Consortium. OGC GeoPose 1.0 Data Exchange Standard. Available: https://www.ogc.org/standards/geopose
Geospatial Standards
[7] Open Geospatial Consortium. CityGML Standard. Available: https://www.ogc.org/standards/citygml
[8] Geohash. Wikipedia Entry. Available: https://en.wikipedia.org/wiki/Geohash
SLAM, SfM & AI World Models
[9] Mur-Artal, R., Montiel, J. M. M., & Tardós, J. D. (2015). ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31(5), 1147–1163.
[10] Schönberger, J. L., & Frahm, J.-M. (2016). Structure-from-Motion Revisited. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4104–4113.
[11] Sarlin, P.-E., Unagar, A., Larsson, M., et al. (2020). From Coarse to Fine: Robust Hierarchical Localization at Large Scale. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 12716–12725.
[12] Google Research. ARCore Geospatial API & Visual Positioning Service. Developer Documentation. Available: https://developers.google.com/ar
Appendix A: Core Profile
The Core profile defines the fundamental data structures for SpatialDDS. It includes pose graphs, 3D geometry tiles, anchors, transforms, and generic blob transport. This is the minimal interoperable baseline for exchanging world models across devices and services.
Common Type Aliases (Normative)
// SPDX-License-Identifier: MIT
// SpatialDDS Common Type Aliases 1.5
#ifndef SPATIAL_COMMON_TYPES_INCLUDED
#define SPATIAL_COMMON_TYPES_INCLUDED
module builtin {
@extensibility(APPENDABLE) struct Time {
int32 sec; // seconds since UNIX epoch (UTC)
uint32 nanosec; // nanoseconds [0, 1e9)
};
};
module spatial {
module common {
typedef double BBox2D[4];
typedef double Aabb3D[6];
typedef double Vec3[3];
typedef double Mat3x3[9];
typedef double Mat6x6[36];
typedef double QuaternionXYZW[4]; // GeoPose order (x, y, z, w)
enum CovarianceType {
@value(0) COV_NONE,
@value(3) COV_POS3,
@value(6) COV_POSE6
};
// Stable, typo-proof frame identity shared across all profiles.
// Equality is by uuid; fqn is a normalized, human-readable alias.
@extensibility(APPENDABLE) struct FrameRef {
string uuid; // REQUIRED: stable identifier for the frame
string fqn; // REQUIRED: normalized FQN, e.g., "oarc/rig01/cam_front"
};
// Optional namespaced metadata bag for asset descriptors.
@extensibility(APPENDABLE) struct MetaKV {
string namespace; // e.g., "sensing.vision.features"
string json; // JSON object string; producer-defined for this namespace
};
// Uniform contract for asset references, covering fetch + integrity.
@extensibility(APPENDABLE) struct AssetRef {
string uri; // required: how to fetch
string media_type; // required: IANA or registry-friendly type (with params)
string hash; // required: e.g., "sha256:<hex>"
sequence<MetaKV, 16> meta; // optional: zero or more namespaced bags
};
};
};
#endif // SPATIAL_COMMON_TYPES_INCLUDED
Geometry Primitives
#ifndef SPATIAL_GEOMETRY_INCLUDED
#define SPATIAL_GEOMETRY_INCLUDED
// SPDX-License-Identifier: MIT
// SpatialDDS Geometry 1.0
#ifndef SPATIAL_COMMON_TYPES_INCLUDED
#include "types.idl"
#endif
module spatial {
module geometry {
typedef spatial::common::FrameRef FrameRef;
}; // module geometry
};
#endif // SPATIAL_GEOMETRY_INCLUDED
Core Module
// SPDX-License-Identifier: MIT
// SpatialDDS Core 1.5
#ifndef SPATIAL_COMMON_TYPES_INCLUDED
#include "types.idl"
#endif
#ifndef SPATIAL_GEOMETRY_INCLUDED
#include "geometry.idl"
#endif
module spatial {
module core {
// Module identity (authoritative string for interop)
const string MODULE_ID = "spatial.core/1.5";
// ---------- Utility ----------
// Expose builtin Time under spatial::core
typedef builtin::Time Time;
@extensibility(APPENDABLE) struct PoseSE3 {
spatial::common::Vec3 t; // translation (x,y,z)
spatial::common::QuaternionXYZW q; // quaternion (x,y,z,w) in GeoPose order
};
@extensibility(APPENDABLE) struct Aabb3 {
spatial::common::Vec3 min_xyz;
spatial::common::Vec3 max_xyz;
};
@extensibility(APPENDABLE) struct TileKey {
@key uint32 x; // tile coordinate (quadtree/3D grid)
@key uint32 y;
@key uint32 z; // use 0 for 2D schemes
@key uint8 level; // LOD level
};
// ---------- Geometry ----------
enum PatchOp {
@value(0) ADD,
@value(1) REPLACE,
@value(2) REMOVE
};
@extensibility(APPENDABLE) struct BlobRef {
string blob_id; // UUID or content-address
string role; // "mesh","attr/normals","pcc/geom","pcc/attr",...
string checksum; // SHA-256 (hex)
};
typedef spatial::common::FrameRef FrameRef;
@extensibility(APPENDABLE) struct TileMeta {
@key TileKey key; // unique tile key
boolean has_tile_id_compat;
string tile_id_compat; // optional human-readable id
spatial::common::Vec3 min_xyz; // AABB min (local frame)
spatial::common::Vec3 max_xyz; // AABB max (local frame)
uint32 lod; // may mirror key.level
uint64 version; // monotonic full-state version
string encoding; // "glTF+Draco","MPEG-PCC","V3C","PLY",...
string checksum; // checksum of composed tile
sequence<string, 32> blob_ids; // blobs composing this tile
// optional geo hints
boolean has_centroid_llh;
spatial::common::Vec3 centroid_llh; // lat,lon,alt (deg,deg,m)
boolean has_radius_m;
double radius_m; // rough extent (m)
string schema_version; // MUST be "spatial.core/1.5"
};
@extensibility(APPENDABLE) struct TilePatch {
@key TileKey key; // which tile
uint64 revision; // monotonic per-tile
PatchOp op; // ADD/REPLACE/REMOVE
string target; // submesh/attr/"all"
sequence<BlobRef, 8> blobs; // payload refs
string post_checksum; // checksum after apply
Time stamp; // production time
};
@extensibility(APPENDABLE) struct BlobChunk {
// Composite key: (blob_id, index) uniquely identifies a chunk instance.
@key string blob_id; // which blob
@key uint32 index; // chunk index (0..N-1)
uint32 total_chunks; // total number of chunks expected for this blob_id
uint32 crc32; // CRC32 checksum over 'data'
boolean last; // true when this is the final chunk for blob_id
sequence<uint8, 262144> data; // ≤256 KiB per sample
};
// ---------- Pose Graph (minimal) ----------
enum EdgeTypeCore {
@value(0) ODOM,
@value(1) LOOP
};
// Discriminated union: exactly one covariance payload (or none) is serialized.
@extensibility(APPENDABLE) union CovMatrix switch (spatial::common::CovarianceType) {
case spatial::common::COV_NONE: uint8 none;
case spatial::common::COV_POS3: spatial::common::Mat3x3 pos;
case spatial::common::COV_POSE6: spatial::common::Mat6x6 pose;
};
@extensibility(APPENDABLE) struct Node {
string map_id;
@key string node_id; // unique keyframe id
PoseSE3 pose; // pose in frame_ref
CovMatrix cov; // covariance payload (COV_NONE when absent)
Time stamp;
FrameRef frame_ref; // e.g., "map"
string source_id;
uint64 seq; // per-source monotonic
uint64 graph_epoch; // for major rebases/merges
};
@extensibility(APPENDABLE) struct Edge {
string map_id;
@key string edge_id; // unique edge id
string from_id; // source node
string to_id; // target node
EdgeTypeCore type; // ODOM or LOOP
spatial::common::Mat6x6 information; // 6x6 info matrix (row-major)
Time stamp;
string source_id;
uint64 seq;
uint64 graph_epoch;
};
// ---------- Geo anchoring ----------
enum GeoFrameKind {
@value(0) ECEF,
@value(1) ENU,
@value(2) NED
};
@extensibility(APPENDABLE) struct GeoPose {
double lat_deg;
double lon_deg;
double alt_m; // ellipsoidal meters
spatial::common::QuaternionXYZW q; // orientation (x,y,z,w) in GeoPose order
GeoFrameKind frame_kind; // ECEF/ENU/NED
FrameRef frame_ref; // for ENU/NED: canonical frame reference
Time stamp;
// Exactly one covariance payload will be present based on the discriminator.
CovMatrix cov;
};
@extensibility(APPENDABLE) struct GeoAnchor {
@key string anchor_id; // e.g., "anchor/4th-and-main"
string map_id;
FrameRef frame_ref; // local frame (e.g., "map")
GeoPose geopose; // global pose
string method; // "GNSS","VisualFix","Surveyed","Fusion"
double confidence; // 0..1
string checksum; // integrity/versioning
};
@extensibility(APPENDABLE) struct FrameTransform {
@key string transform_id; // e.g., "map->ENU@lat,lon,alt"
FrameRef parent_ref; // global frame (ENU@..., ECEF, ...)
FrameRef child_ref; // local frame ("map")
PoseSE3 T_parent_child; // transform parent->child
Time stamp;
CovMatrix cov; // covariance payload (COV_NONE when absent)
};
// ---------- Snapshot / Catch-up ----------
@extensibility(APPENDABLE) struct SnapshotRequest {
@key TileKey key; // which tile
uint64 up_to_revision; // 0 = latest
};
@extensibility(APPENDABLE) struct SnapshotResponse {
@key TileKey key; // tile key
uint64 revision; // snapshot revision served
sequence<string, 64> blob_ids; // composing blobs
string checksum; // composed state checksum
};
}; // module core
}; // module spatial
Appendix B: Discovery Profile
The Discovery profile defines the lightweight announce messages and manifests that allow services, coverage areas, and spatial content or experiences to be discovered at runtime. It enables SpatialDDS deployments to remain decentralized while still providing structured service discovery.
SpatialDDS Discovery is a bus-level mechanism: it describes nodes, topics, coverage, capabilities, and URIs that exist on the DDS fabric itself. Higher-level service catalogues (such as OSCP's Spatial Service Discovery Systems) are expected to run on top of SpatialDDS. They may store, index, or federate SpatialDDS manifests and URIs, but they are application-layer services and do not replace the on-bus discovery topics defined here.
See Appendix F.X (Discovery Query Expression) for the normative grammar used by CoverageQuery.expr filters.
// SPDX-License-Identifier: MIT
// SpatialDDS Discovery 1.5
// Lightweight announces for services, coverage, and content
#ifndef SPATIAL_CORE_INCLUDED
#define SPATIAL_CORE_INCLUDED
#include "core.idl"
#endif
module spatial {
module disco {
// Asset references (middle-ground model) reuse the shared spatial::common
// types so that manifests and discovery share a single contract.
typedef spatial::common::MetaKV MetaKV;
typedef spatial::common::AssetRef AssetRef;
const string MODULE_ID = "spatial.discovery/1.5";
typedef builtin::Time Time;
typedef spatial::core::Aabb3 Aabb3;
typedef spatial::core::FrameRef FrameRef;
typedef spatial::core::PoseSE3 PoseSE3;
// Canonical manifest references use the spatialdds:// URI scheme.
typedef string SpatialUri;
// --- Profile version advertisement (additive) ---
// Semver per profile: name@MAJOR.MINOR
// Each row declares a contiguous range of MINORs within a single MAJOR.
@extensibility(APPENDABLE) struct ProfileSupport {
string name; // e.g., "core", "discovery", "sensing.common", "sensing.rad"
uint32 major; // compatible major (e.g., 1)
uint32 min_minor; // lowest supported minor within 'major' (e.g., 0)
uint32 max_minor; // highest supported minor within 'major' (e.g., 2) // supports 1.0..1.2
boolean preferred; // optional tie-breaker hint (usually false)
};
// --- Optional feature flags (namespaced strings, e.g., "blob.crc32", "rad.tensor.zstd") ---
@extensibility(APPENDABLE) struct FeatureFlag {
string name;
};
// --- Capabilities advertised in-band on the discovery bus ---
@extensibility(APPENDABLE) struct Capabilities {
sequence<ProfileSupport, 64> supported_profiles;
sequence<string, 32> preferred_profiles; // e.g., ["discovery@1.2","core@1.5"]
sequence<FeatureFlag, 64> features; // optional feature flags
};
// --- Topic metadata to enable selection without parsing payloads ---
@extensibility(APPENDABLE) struct TopicMeta {
string name; // e.g., "spatialdds/perception/cam_front/video_frame/v1"
string type; // geometry_tile | video_frame | radar_tensor | seg_mask | desc_array
string version; // currently fixed to "v1"
string qos_profile; // GEOM_TILE | VIDEO_LIVE | RADAR_RT | SEG_MASK_RT | DESC_BATCH
// type, version, and qos_profile are mandatory fields describing the
// topic’s semantic type and QoS profile.
// optional advisory hints (topic-level, not per-message)
float target_rate_hz;
uint32 max_chunk_bytes;
};
enum ServiceKind {
@value(0) VPS,
@value(1) MAPPING,
@value(2) RELOCAL,
@value(3) SEMANTICS,
@value(4) STORAGE,
@value(5) CONTENT,
@value(6) ANCHOR_REGISTRY,
@value(7) OTHER
};
@extensibility(APPENDABLE) struct KV {
string key;
string value;
};
// coverage_frame_ref is the canonical frame for an announcement. CoverageElement.frame_ref MAY override it sparingly.
// If coverage_frame_ref is earth-fixed, bbox is [west,south,east,north] in degrees (EPSG:4326/4979); otherwise coordinates
// are in local meters.
@extensibility(APPENDABLE) struct CoverageElement {
string type; // "bbox" | "volume"
boolean has_crs;
string crs; // optional CRS identifier for earth-fixed frames (e.g., EPSG code)
// Presence flags indicate which geometry payloads are provided.
// When has_bbox == true, bbox MUST contain finite coordinates; consumers SHALL reject non-finite values.
boolean has_bbox;
spatial::common::BBox2D bbox; // [west, south, east, north]
// When has_aabb == true, aabb MUST contain finite coordinates; consumers SHALL reject non-finite values.
boolean has_aabb;
Aabb3 aabb; // axis-aligned bounds in the declared frame
// Explicit global coverage toggle: when true, bbox/aabb may be ignored by consumers.
boolean global;
// Optional per-element frame override. If has_frame_ref == false, this element MUST use coverage_frame_ref.
boolean has_frame_ref;
FrameRef frame_ref; // Use sparingly to mix a few local frames within one announcement.
};
// Validity window for time-bounded transforms.
@extensibility(APPENDABLE) struct ValidityWindow {
Time from; // inclusive start time
uint32 seconds; // duration from 'from'
};
// Quaternion follows GeoPose: unit [x,y,z,w]; pose maps FROM 'from' TO 'to'
@extensibility(APPENDABLE) struct Transform {
FrameRef from; // source frame (e.g., "map")
FrameRef to; // target frame (e.g., "earth-fixed")
PoseSE3 pose; // maps from 'from' into 'to' (parent → child)
Time stamp; // publication timestamp
boolean has_validity; // when true, 'validity' bounds the transform
ValidityWindow validity; // explicit validity window
};
@extensibility(APPENDABLE) struct Announce {
@key string service_id;
string name;
ServiceKind kind;
string version;
string org;
sequence<KV,32> hints;
// New: wire-level capability advertisement for version negotiation.
Capabilities caps; // in-band capabilities (profiles + features)
sequence<TopicMeta,128> topics; // topic list with typed-topic metadata
sequence<CoverageElement,16> coverage;
FrameRef coverage_frame_ref; // canonical frame consumers should use when evaluating coverage
boolean has_coverage_eval_time;
Time coverage_eval_time; // evaluate time-varying transforms at this instant when interpreting coverage_frame_ref
sequence<Transform,8> transforms;
SpatialUri manifest_uri; // MUST be a spatialdds:// URI for this service manifest
string auth_hint;
Time stamp;
uint32 ttl_sec;
};
@extensibility(APPENDABLE) struct CoverageHint {
@key string service_id;
sequence<CoverageElement,16> coverage;
FrameRef coverage_frame_ref;
boolean has_coverage_eval_time;
Time coverage_eval_time; // evaluate transforms at this instant when interpreting coverage_frame_ref
sequence<Transform,8> transforms;
Time stamp;
uint32 ttl_sec;
};
@extensibility(APPENDABLE) struct CoverageFilter {
sequence<string,16> type_in; // match any of these topic types
sequence<string,16> qos_profile_in; // match any of these QoS profiles
sequence<string,16> module_id_in; // match any of these module IDs
};
@extensibility(APPENDABLE) struct CoverageQuery {
// Correlates responses to a specific query instance.
@key string query_id;
sequence<CoverageElement,4> coverage; // requested regions of interest
FrameRef coverage_frame_ref;
boolean has_coverage_eval_time;
Time coverage_eval_time; // evaluate transforms at this instant when interpreting coverage_frame_ref
// Structured filter (preferred in 1.5).
boolean has_filter;
CoverageFilter filter;
// Deprecated in 1.5: freeform expression per Appendix F.X.
// Responders MUST ignore expr if has_filter == true.
// Example: "type==\"radar_tensor\" && module_id==\"spatial.sensing.rad/1.5\""
string expr;
// Discovery responders publish CoverageResponse samples to this topic.
string reply_topic;
Time stamp;
uint32 ttl_sec;
};
@extensibility(APPENDABLE) struct ContentAnnounce {
@key string content_id;
string provider_id;
string title;
string summary;
sequence<string,16> tags;
string class_id;
SpatialUri manifest_uri; // MUST be a spatialdds:// URI for this content manifest
sequence<CoverageElement,16> coverage;
FrameRef coverage_frame_ref;
boolean has_coverage_eval_time;
Time coverage_eval_time;
sequence<Transform,8> transforms;
Time available_from;
Time available_until;
Time stamp;
uint32 ttl_sec;
};
@extensibility(APPENDABLE) struct CoverageResponse {
string query_id; // Mirrors CoverageQuery.query_id for correlation.
sequence<Announce,256> results; // Result page (caps + typed topics)
string next_page_token; // Empty when no further pages remain.
};
@extensibility(APPENDABLE) struct Depart {
@key string service_id;
Time stamp;
};
}; // module disco
};
Appendix C: Anchor Registry Profile
The Anchors profile defines durable GeoAnchors and the Anchor Registry. Anchors act as persistent world-locked reference points, while the registry makes them discoverable and maintainable across sessions, devices, and services.
// SPDX-License-Identifier: MIT
// SpatialDDS Anchors 1.5
// Bundles and updates for anchor registries
#ifndef SPATIAL_CORE_INCLUDED
#define SPATIAL_CORE_INCLUDED
#include "core.idl"
#endif
module spatial {
module anchors {
const string MODULE_ID = "spatial.anchors/1.5";
typedef builtin::Time Time;
typedef spatial::core::GeoPose GeoPose;
typedef spatial::core::FrameRef FrameRef;
@extensibility(APPENDABLE) struct AnchorEntry {
@key string anchor_id;
string name;
GeoPose geopose;
double confidence;
sequence<string,8> tags;
Time stamp;
string checksum;
};
@extensibility(APPENDABLE) struct AnchorSet {
@key string set_id;
string title;
string provider_id;
FrameRef map_frame;
string version;
sequence<string,16> tags;
double center_lat; double center_lon; double radius_m;
sequence<AnchorEntry,256> anchors;
Time stamp;
string checksum;
};
enum AnchorOp {
@value(0) ADD,
@value(1) UPDATE,
@value(2) REMOVE
};
@extensibility(APPENDABLE) struct AnchorDelta {
@key string set_id;
AnchorOp op;
AnchorEntry entry;
uint64 revision;
Time stamp;
string post_checksum;
};
@extensibility(APPENDABLE) struct AnchorSetRequest {
@key string set_id;
uint64 up_to_revision;
};
@extensibility(APPENDABLE) struct AnchorSetResponse {
@key string set_id;
uint64 revision;
AnchorSet set;
};
}; // module anchors
};
Appendix D: Extension Profiles
These extensions provide domain-specific capabilities beyond the Core profile. The Sensing Common module supplies reusable sensing metadata, ROI negotiation structures, and codec/payload descriptors that the specialized sensor profiles build upon. The VIO profile carries raw and fused IMU/magnetometer samples. The Vision profile shares camera metadata, encoded frames, and optional feature tracks for perception pipelines. The SLAM Frontend profile adds features and keyframes for SLAM and SfM pipelines. The Semantics profile allows 2D and 3D object detections to be exchanged for AR, robotics, and analytics use cases. The Radar profile streams radar tensors, derived detections, and optional ROI control. The Lidar profile transports compressed point clouds, associated metadata, and optional detections for mapping and perception workloads. The AR+Geo profile adds GeoPose, frame transforms, and geo-anchoring structures, which allow clients to align local coordinate systems with global reference frames and support persistent AR content.
Common type aliases and geometry primitives are defined once in Appendix A. Extension modules import those shared definitions and MUST NOT re-declare them.
Sensing Common Extension
Shared base types, enums, and ROI negotiation utilities reused by all sensing profiles (radar, lidar, vision).
// SPDX-License-Identifier: MIT
// SpatialDDS Sensing Common 1.5 (Extension module)
#ifndef SPATIAL_CORE_INCLUDED
#define SPATIAL_CORE_INCLUDED
#include "core.idl"
#endif
module spatial { module sensing { module common {
const string MODULE_ID = "spatial.sensing.common/1.5";
// --- Standard sizing tiers ---
// Use these to bound sequences for detections and other per-frame arrays.
const uint32 SZ_TINY = 64;
const uint32 SZ_SMALL = 256;
const uint32 SZ_MEDIUM = 2048;
const uint32 SZ_LARGE = 8192;
const uint32 SZ_XL = 32768;
// Reuse Core primitives (time, pose, blob references)
typedef builtin::Time Time;
typedef spatial::core::PoseSE3 PoseSE3;
typedef spatial::core::BlobRef BlobRef;
typedef spatial::common::FrameRef FrameRef;
// ---- Axes & Regions (for tensors or scans) ----
enum AxisEncoding {
@value(0) AXIS_CENTERS,
@value(1) AXIS_LINSPACE
};
// Compact parametric axis definition
@extensibility(APPENDABLE) struct Linspace {
double start; // first point
double step; // spacing (may be negative for descending axes)
uint32 count; // number of samples (>=1)
};
// Discriminated union: carries only one encoding on wire
@extensibility(APPENDABLE) union AxisSpec switch (AxisEncoding) {
case AXIS_CENTERS: sequence<double, 65535> centers;
case AXIS_LINSPACE: Linspace lin;
};
@extensibility(APPENDABLE) struct Axis {
string name; // "range","azimuth","elevation","doppler","time","channel"
string unit; // "m","deg","m/s","Hz","s",...
AxisSpec spec; // encoding of the axis samples (centers or linspace)
};
@extensibility(APPENDABLE) struct ROI {
// Range bounds (meters). When has_range == false, consumers MUST ignore range_min/range_max.
boolean has_range;
float range_min;
float range_max;
// Azimuth bounds (degrees). When has_azimuth == false, azimuth bounds are unspecified.
boolean has_azimuth;
float az_min;
float az_max;
// Elevation bounds (degrees). When has_elevation == false, elevation bounds are unspecified.
boolean has_elevation;
float el_min;
float el_max;
// Doppler bounds (m/s). When has_doppler == false, doppler_min/doppler_max are unspecified.
boolean has_doppler;
float dop_min;
float dop_max;
// Image-plane ROI for vision (pixels). When has_image_roi == false, u/v bounds are unspecified.
boolean has_image_roi;
int32 u_min;
int32 v_min;
int32 u_max;
int32 v_max;
// Indicates this ROI covers the entire valid domain of its axes. When true, all numeric bounds may be ignored.
boolean global;
};
// ---- Codecs / Payload kinds (shared enums) ----
enum Codec {
@value(0) CODEC_NONE,
@value(1) LZ4,
@value(2) ZSTD,
@value(3) GZIP,
@value(10) DRACO, // geometry compression
@value(20) JPEG,
@value(21) H264,
@value(22) H265,
@value(23) AV1,
@value(40) FP8Q,
@value(41) FP4Q,
@value(42) AE_V1
};
enum PayloadKind {
@value(0) DENSE_TILES, // tiled dense blocks (e.g., tensor tiles)
@value(1) SPARSE_COO, // sparse indices + values
@value(2) LATENT, // learned latent vectors
@value(10) BLOB_GEOMETRY, // PCC/PLY/glTF+Draco
@value(11) BLOB_RASTER // JPEG/GOP chunk(s)
};
enum SampleType { // post-decode voxel/point sample type
@value(0) U8_MAG,
@value(1) F16_MAG,
@value(2) CF16,
@value(3) CF32,
@value(4) MAGPHASE_S8
};
// ---- Stream identity & calibration header shared by sensors ----
@extensibility(APPENDABLE) struct StreamMeta {
@key string stream_id; // stable id for this sensor stream
FrameRef frame_ref; // mounting frame (Core frame naming)
PoseSE3 T_bus_sensor; // extrinsics (sensor in bus frame)
double nominal_rate_hz; // advertised cadence
string schema_version; // MUST be "spatial.sensing.common/1.5"
};
// ---- Frame index header shared by sensors (small, on-bus) ----
@extensibility(APPENDABLE) struct FrameHeader {
@key string stream_id;
uint64 frame_seq;
Time t_start;
Time t_end;
// Optional sensor pose at acquisition (moving platforms)
boolean has_sensor_pose;
PoseSE3 sensor_pose;
// data pointers: heavy bytes referenced as blobs
sequence<BlobRef, SZ_SMALL> blobs;
};
// ---- Quality & health (uniform across sensors) ----
enum Health {
@value(0) OK,
@value(1) DEGRADED,
@value(2) ERROR
};
@extensibility(APPENDABLE) struct FrameQuality {
boolean has_snr_db;
float snr_db; // valid when has_snr_db == true
float percent_valid; // 0..100
Health health;
string note; // short diagnostic
};
// ---- ROI request/reply (control-plane pattern) ----
@extensibility(APPENDABLE) struct ROIRequest {
@key string stream_id;
uint64 request_id;
Time t_start; Time t_end;
ROI roi;
boolean wants_payload_kind; PayloadKind desired_payload_kind;
boolean wants_codec; Codec desired_codec;
boolean wants_sample_type; SampleType desired_sample_type;
int32 max_bytes; // -1 for unlimited
};
@extensibility(APPENDABLE) struct ROIReply {
@key string stream_id;
uint64 request_id;
// Typically returns new frames whose blobs contain only the ROI
sequence<spatial::sensing::common::FrameHeader, 64> frames;
};
}; }; };
Standard Sequence Bounds (Normative)
| Payload | Recommended Bound | Rationale |
|---|---|---|
| 2D Detections (per frame) | SZ_MEDIUM (2048) |
Typical object detectors |
| 3D Detections (LiDAR) | SZ_SMALL (256) |
Clusters/objects, not raw points |
| Radar Detections (micro-dets) | SZ_XL (32768) |
Numerous sparse returns per frame |
| Keypoints/Tracks (per frame) | SZ_LARGE (8192) |
Feature-rich frames |
Producers SHOULD choose the smallest tier that covers real workloads; exceeding these bounds requires a new profile minor.
Axis Encoding (Normative)
The Axis struct embeds a discriminated union to ensure only one encoding is transmitted on the wire.
enum AxisEncoding { AXIS_CENTERS = 0, AXIS_LINSPACE = 1 };
@extensibility(APPENDABLE) struct Linspace { double start; double step; uint32 count; };
@extensibility(APPENDABLE) union AxisSpec switch (AxisEncoding) {
case AXIS_CENTERS: sequence<double, 65535> centers;
case AXIS_LINSPACE: Linspace lin;
default: ;
};
@extensibility(APPENDABLE) struct Axis { string name; string unit; AxisSpec spec; };
AXIS_CENTERS— Explicit sample positions carried asdoublevalues.AXIS_LINSPACE— Uniform grid defined bystart + i * stepfori ∈ [0, count‑1].- Negative
stepindicates descending axes. countMUST be ≥ 1 andstep * (count – 1) + startyields the last coordinate.
IDL Tooling Notes (Non-Consecutive Enums)
Several enumerations in the SpatialDDS 1.5 profiles use intentionally
sparse or non-consecutive numeric values. These enums are designed for
forward extensibility (e.g., reserving ranges for future codecs, layouts, or
pixel formats). Because of this, certain DDS toolchains (including Cyclone
DDS’s idlc) may emit non-fatal warnings such as:
“enum literal values are not consecutive”
These warnings do not indicate a schema error. All affected enums are valid IDL4.x and interoperable on the wire.
The intentionally sparse enums are:
- CovarianceType (types.idl)
- Codec (common.idl)
- PayloadKind (common.idl)
- RadTensorLayout (rad.idl)
- CloudEncoding (lidar.idl)
- ColorSpace (vision.idl)
- PixFormat (vision.idl)
No changes are required for implementers. These warnings may be safely ignored.
VIO / Inertial Extension
Raw IMU/mag samples, 9-DoF bundles, and fused state outputs.
// SPDX-License-Identifier: MIT
// SpatialDDS VIO/Inertial 1.5
#ifndef SPATIAL_CORE_INCLUDED
#define SPATIAL_CORE_INCLUDED
#include "core.idl"
#endif
module spatial {
module vio {
const string MODULE_ID = "spatial.vio/1.5";
typedef builtin::Time Time;
typedef spatial::common::FrameRef FrameRef;
// IMU calibration
@extensibility(APPENDABLE) struct ImuInfo {
@key string imu_id;
FrameRef frame_ref;
double accel_noise_density; // (m/s^2)/√Hz
double gyro_noise_density; // (rad/s)/√Hz
double accel_random_walk; // (m/s^3)/√Hz
double gyro_random_walk; // (rad/s^2)/√Hz
Time stamp;
};
// Raw IMU sample
@extensibility(APPENDABLE) struct ImuSample {
@key string imu_id;
spatial::common::Vec3 accel; // m/s^2
spatial::common::Vec3 gyro; // rad/s
Time stamp;
string source_id;
uint64 seq;
};
// Magnetometer
@extensibility(APPENDABLE) struct MagnetometerSample {
@key string mag_id;
spatial::common::Vec3 mag; // microtesla
Time stamp;
FrameRef frame_ref;
string source_id;
uint64 seq;
};
// Convenience raw 9-DoF bundle
@extensibility(APPENDABLE) struct SensorFusionSample {
@key string fusion_id; // e.g., device id
spatial::common::Vec3 accel; // m/s^2
spatial::common::Vec3 gyro; // rad/s
spatial::common::Vec3 mag; // microtesla
Time stamp;
FrameRef frame_ref;
string source_id;
uint64 seq;
};
// Fused state (orientation ± position)
enum FusionMode {
@value(0) ORIENTATION_3DOF,
@value(1) ORIENTATION_6DOF,
@value(2) POSE_6DOF
};
enum FusionSourceKind {
@value(0) EKF,
@value(1) AHRS,
@value(2) VIO_FUSED,
@value(3) IMU_ONLY,
@value(4) MAG_AIDED,
@value(5) AR_PLATFORM
};
@extensibility(APPENDABLE) struct FusedState {
@key string fusion_id;
FusionMode mode;
FusionSourceKind source_kind;
spatial::common::QuaternionXYZW q; // quaternion (x,y,z,w) in GeoPose order
boolean has_position;
spatial::common::Vec3 t; // meters, in frame_ref
boolean has_gravity;
spatial::common::Vec3 gravity; // m/s^2
boolean has_lin_accel;
spatial::common::Vec3 lin_accel; // m/s^2
boolean has_gyro_bias;
spatial::common::Vec3 gyro_bias; // rad/s
boolean has_accel_bias;
spatial::common::Vec3 accel_bias; // m/s^2
boolean has_cov_orient;
spatial::common::Mat3x3 cov_orient; // 3x3 covariance
boolean has_cov_pos;
spatial::common::Mat3x3 cov_pos; // 3x3 covariance
Time stamp;
FrameRef frame_ref;
string source_id;
uint64 seq;
double quality; // 0..1
};
}; // module vio
};
Vision Extension
Camera intrinsics, video frames, and keypoints/tracks for perception and analytics pipelines. ROI semantics follow §2 Conventions for global normative rules; axes use the Sensing Common AXIS_CENTERS/AXIS_LINSPACE union encoding. See §2 Conventions for global normative rules.
// SPDX-License-Identifier: MIT
// SpatialDDS Vision (sensing.vision) 1.5 — Extension profile
#ifndef SPATIAL_CORE_INCLUDED
#define SPATIAL_CORE_INCLUDED
#include "core.idl"
#endif
#ifndef SPATIAL_SENSING_COMMON_INCLUDED
#define SPATIAL_SENSING_COMMON_INCLUDED
#include "common.idl"
#endif
module spatial { module sensing { module vision {
// Module identifier for discovery and schema registration
const string MODULE_ID = "spatial.sensing.vision/1.5";
// Reuse Core + Sensing Common
typedef builtin::Time Time;
typedef spatial::core::PoseSE3 PoseSE3;
typedef spatial::core::BlobRef BlobRef;
typedef spatial::common::FrameRef FrameRef;
typedef spatial::sensing::common::Codec Codec; // JPEG/H264/H265/AV1, etc.
typedef spatial::sensing::common::PayloadKind PayloadKind; // use BLOB_RASTER for frames/GOPs
typedef spatial::sensing::common::SampleType SampleType;
typedef spatial::sensing::common::Axis Axis;
typedef spatial::sensing::common::ROI ROI;
typedef spatial::sensing::common::StreamMeta StreamMeta;
typedef spatial::sensing::common::FrameHeader FrameHeader;
typedef spatial::sensing::common::FrameQuality FrameQuality;
typedef spatial::sensing::common::ROIRequest ROIRequest;
typedef spatial::sensing::common::ROIReply ROIReply;
// ROI bounds follow Sensing Common presence flags.
// Axis samples are encoded via the Sensing Common union (AXIS_CENTERS or AXIS_LINSPACE).
// Camera / imaging specifics
enum CamModel {
@value(0) PINHOLE,
@value(1) FISHEYE_EQUIDISTANT,
@value(2) KB_4,
@value(3) OMNI
};
enum Distortion {
@value(0) NONE,
@value(1) RADTAN,
@value(2) KANNALA_BRANDT
};
enum PixFormat {
@value(0) UNKNOWN,
@value(1) YUV420,
@value(2) RGB8,
@value(3) BGR8,
@value(4) RGBA8,
@value(10) RAW10,
@value(12) RAW12,
@value(16) RAW16
};
enum ColorSpace {
@value(0) SRGB,
@value(1) REC709,
@value(2) REC2020,
@value(10) LINEAR
};
enum RigRole {
@value(0) LEFT,
@value(1) RIGHT,
@value(2) CENTER,
@value(3) AUX
};
@extensibility(APPENDABLE) struct CamIntrinsics {
CamModel model;
uint16 width; uint16 height;
float fx; float fy; float cx; float cy;
Distortion dist;
sequence<float,16> dist_params; // k1,k2,p1,p2,k3,... or KB params
float shutter_us; // exposure time
float readout_us; // rolling-shutter line time (0=global)
PixFormat pix; ColorSpace color;
string calib_version; // hash or tag
};
// Static description — RELIABLE + TRANSIENT_LOCAL (late joiners receive the latest meta)
@extensibility(APPENDABLE) struct VisionMeta {
@key string stream_id;
StreamMeta base; // frame_ref, T_bus_sensor, nominal_rate_hz
CamIntrinsics K; // intrinsics
RigRole role; // for stereo/rigs
string rig_id; // shared id across synchronized cameras
// Default payload (frames ride as blobs)
Codec codec; // JPEG/H264/H265/AV1 or NONE
PixFormat pix; // for RAW payloads
ColorSpace color;
string schema_version; // MUST be "spatial.sensing.vision/1.5"
};
// Per-frame index — BEST_EFFORT + KEEP_LAST=1 (large payloads referenced via blobs)
@extensibility(APPENDABLE) struct VisionFrame {
@key string stream_id;
uint64 frame_seq;
FrameHeader hdr; // t_start/t_end, optional sensor_pose, blobs[]
// May override meta per-frame
Codec codec;
PixFormat pix;
ColorSpace color;
boolean has_line_readout_us;
float line_readout_us; // valid when has_line_readout_us == true
boolean rectified; // true if pre-rectified to pinhole
FrameQuality quality; // shared health/SNR notes
};
// Optional lightweight derivatives (for VIO/SfM/analytics)
@extensibility(APPENDABLE) struct Keypoint2D { float u; float v; float score; };
@extensibility(APPENDABLE) struct Track2D {
uint64 id;
sequence<Keypoint2D, spatial::sensing::common::SZ_LARGE> trail;
};
// Detections topic — BEST_EFFORT
@extensibility(APPENDABLE) struct VisionDetections {
@key string stream_id;
uint64 frame_seq;
Time stamp;
sequence<Keypoint2D, spatial::sensing::common::SZ_LARGE> keypoints;
sequence<Track2D, spatial::sensing::common::SZ_MEDIUM> tracks;
// Masks/boxes can be added in Semantics profile to keep Vision lean
};
}; }; };
SLAM Frontend Extension
Per-keyframe features, matches, landmarks, tracks, and camera calibration.
// SPDX-License-Identifier: MIT
// SpatialDDS SLAM Frontend 1.5
#ifndef SPATIAL_CORE_INCLUDED
#define SPATIAL_CORE_INCLUDED
#include "core.idl"
#endif
module spatial {
module slam_frontend {
const string MODULE_ID = "spatial.slam_frontend/1.5";
// Reuse core: Time, etc.
typedef builtin::Time Time;
typedef spatial::common::FrameRef FrameRef;
// Camera calibration
enum DistortionModelKind {
@value(0) NONE,
@value(1) RADTAN,
@value(2) EQUIDISTANT,
@value(3) KANNALA_BRANDT
};
@extensibility(APPENDABLE) struct CameraInfo {
@key string camera_id;
uint32 width; uint32 height; // pixels
double fx; double fy; // focal (px)
double cx; double cy; // principal point (px)
DistortionModelKind dist_kind;
sequence<double, 8> dist; // model params (bounded)
FrameRef frame_ref; // camera frame
Time stamp; // calib time (or 0 if static)
};
// 2D features & descriptors per keyframe
@extensibility(APPENDABLE) struct Feature2D {
double u; double v; // pixel coords
float scale; // px
float angle; // rad [0,2π)
float score; // detector response
};
@extensibility(APPENDABLE) struct KeyframeFeatures {
@key string node_id; // keyframe id
string camera_id;
string desc_type; // "ORB32","BRISK64","SPT256Q",...
uint32 desc_len; // bytes per descriptor
boolean row_major; // layout hint
sequence<Feature2D, 4096> keypoints; // ≤4096
sequence<uint8, 1048576> descriptors; // ≤1 MiB packed bytes
Time stamp;
string source_id;
uint64 seq;
};
// Optional cross-frame matches
@extensibility(APPENDABLE) struct FeatureMatch {
string node_id_a; uint32 idx_a;
string node_id_b; uint32 idx_b;
float score; // similarity or distance
};
@extensibility(APPENDABLE) struct MatchSet {
@key string match_id; // e.g., "kf_12<->kf_18"
sequence<FeatureMatch, 8192> matches;
Time stamp;
string source_id;
};
// Sparse 3D landmarks & tracks (optional)
@extensibility(APPENDABLE) struct Landmark {
@key string lm_id;
string map_id;
spatial::common::Vec3 p;
boolean has_cov;
spatial::common::Mat3x3 cov; // 3x3 pos covariance (row-major)
sequence<uint8, 4096> desc; // descriptor bytes
string desc_type;
Time stamp;
string source_id;
uint64 seq;
};
@extensibility(APPENDABLE) struct TrackObs {
string node_id; // observing keyframe
double u; double v; // pixel coords
};
@extensibility(APPENDABLE) struct Tracklet {
@key string track_id;
boolean has_lm_id; // true when lm_id is populated
string lm_id; // link to Landmark when present
sequence<TrackObs, 64> obs; // ≤64 obs
string source_id;
Time stamp;
};
}; // module slam_frontend
};
Semantics / Perception Extension
2D detections tied to keyframes; 3D oriented boxes in world frames (optionally tiled).
// SPDX-License-Identifier: MIT
// SpatialDDS Semantics 1.5
#ifndef SPATIAL_CORE_INCLUDED
#define SPATIAL_CORE_INCLUDED
#include "core.idl"
#endif
#ifndef SPATIAL_SENSING_COMMON_INCLUDED
#define SPATIAL_SENSING_COMMON_INCLUDED
#include "common.idl"
#endif
module spatial {
module semantics {
const string MODULE_ID = "spatial.semantics/1.5";
typedef builtin::Time Time;
typedef spatial::core::TileKey TileKey;
typedef spatial::common::FrameRef FrameRef;
// 2D detections per keyframe (image space)
@extensibility(APPENDABLE) struct Detection2D {
@key string det_id; // unique per publisher
string node_id; // keyframe id
string camera_id; // camera
string class_id; // ontology label
float score; // [0..1]
spatial::common::BBox2D bbox; // [u_min,v_min,u_max,v_max] (px)
boolean has_mask; // if a pixel mask exists
string mask_blob_id; // BlobChunk ref (role="mask")
Time stamp;
string source_id;
};
@extensibility(APPENDABLE) struct Detection2DSet {
@key string set_id; // batch id (e.g., node_id + seq)
string node_id;
string camera_id;
sequence<Detection2D, spatial::sensing::common::SZ_SMALL> dets; // ≤256
Time stamp;
string source_id;
};
// 3D detections in world/local frame (scene space)
@extensibility(APPENDABLE) struct Detection3D {
@key string det_id;
FrameRef frame_ref; // e.g., "map" (pose known elsewhere)
boolean has_tile;
TileKey tile_key; // valid when has_tile = true
string class_id; // semantic label
float score; // [0..1]
// Oriented bounding box in frame_ref
spatial::common::Vec3 center; // m
spatial::common::Vec3 size; // width,height,depth (m)
spatial::common::QuaternionXYZW q; // orientation (x,y,z,w) in GeoPose order
// Uncertainty (optional)
boolean has_covariance;
spatial::common::Mat3x3 cov_pos; // 3x3 position covariance (row-major)
spatial::common::Mat3x3 cov_rot; // 3x3 rotation covariance (row-major)
// Optional instance tracking
boolean has_track_id;
string track_id;
Time stamp;
string source_id;
};
@extensibility(APPENDABLE) struct Detection3DSet {
@key string set_id; // batch id
FrameRef frame_ref; // common frame for the set
boolean has_tile;
TileKey tile_key; // valid when has_tile = true
sequence<Detection3D, spatial::sensing::common::SZ_SMALL> dets; // ≤128
Time stamp;
string source_id;
};
}; // module semantics
};
Radar Extension
Radar tensor metadata, frame indices, ROI negotiation, and derived detection sets. ROI semantics follow §2 Conventions for global normative rules; axes use the Sensing Common AXIS_CENTERS/AXIS_LINSPACE union encoding. See §2 Conventions for global normative rules.
// SPDX-License-Identifier: MIT
// SpatialDDS Radar (RAD) 1.5 — Extension profile
#ifndef SPATIAL_CORE_INCLUDED
#define SPATIAL_CORE_INCLUDED
#include "core.idl"
#endif
#ifndef SPATIAL_SENSING_COMMON_INCLUDED
#define SPATIAL_SENSING_COMMON_INCLUDED
#include "common.idl"
#endif
module spatial { module sensing { module rad {
// Module identifier for discovery and schema registration
const string MODULE_ID = "spatial.sensing.rad/1.5";
// Reuse Core + Sensing Common types
typedef builtin::Time Time;
typedef spatial::core::PoseSE3 PoseSE3;
typedef spatial::core::BlobRef BlobRef;
typedef spatial::common::FrameRef FrameRef;
typedef spatial::sensing::common::Axis Axis;
typedef spatial::sensing::common::ROI ROI;
typedef spatial::sensing::common::Codec Codec;
typedef spatial::sensing::common::PayloadKind PayloadKind;
typedef spatial::sensing::common::SampleType SampleType;
typedef spatial::sensing::common::StreamMeta StreamMeta;
typedef spatial::sensing::common::FrameHeader FrameHeader;
typedef spatial::sensing::common::FrameQuality FrameQuality;
typedef spatial::sensing::common::ROIRequest ROIRequest;
typedef spatial::sensing::common::ROIReply ROIReply;
// ROI bounds follow Sensing Common presence flags.
// Axis samples are encoded via the Sensing Common union (AXIS_CENTERS or AXIS_LINSPACE).
// Layout of the RAD tensor
enum RadTensorLayout {
@value(0) RA_D,
@value(1) R_AZ_EL_D,
@value(255) CUSTOM
};
// Static description — RELIABLE + TRANSIENT_LOCAL (late joiners receive the latest meta)
@extensibility(APPENDABLE) struct RadMeta {
@key string stream_id; // stable id for this radar stream
StreamMeta base; // frame_ref, T_bus_sensor, nominal_rate_hz
RadTensorLayout layout; // order of axes
sequence<Axis, 8> axes; // axis definitions (range/az/el/doppler)
SampleType voxel_type; // pre-compression sample type (e.g., CF16, U8_MAG)
string physical_meaning; // e.g., "post 3D-FFT complex baseband"
string schema_version; // MUST be "spatial.sensing.rad/1.5"
// Default payload settings for frames
PayloadKind payload_kind; // DENSE_TILES, SPARSE_COO, or LATENT
Codec codec; // LZ4, ZSTD, FP8Q, AE_V1, ...
boolean has_quant_scale;
float quant_scale; // valid when has_quant_scale == true
uint32 tile_size[4]; // for DENSE_TILES; unused dims = 1
};
// Per-frame index — BEST_EFFORT + KEEP_LAST=1 (large payloads referenced via blobs)
@extensibility(APPENDABLE) struct RadFrame {
@key string stream_id;
uint64 frame_seq;
FrameHeader hdr; // t_start/t_end, optional sensor_pose, blobs[]
PayloadKind payload_kind; // may override defaults
Codec codec; // may override defaults
SampleType voxel_type_after_decode; // post-decode type (e.g., CF16 → MAG_F16)
boolean has_quant_scale;
float quant_scale; // valid when has_quant_scale == true
FrameQuality quality; // SNR/valid%/health note
string proc_chain; // e.g., "FFT3D->hann->OS-CFAR"
};
// Lightweight derivative for fast fusion/tracking (optional)
@extensibility(APPENDABLE) struct RadDetection {
spatial::common::Vec3 xyz_m; // Cartesian point in base.frame_ref
boolean has_v_r_mps;
double v_r_mps; // valid when has_v_r_mps == true
float intensity; // reflectivity/magnitude
float quality; // 0..1
};
// Detections topic — BEST_EFFORT
@extensibility(APPENDABLE) struct RadDetectionSet {
@key string stream_id;
uint64 frame_seq;
FrameRef frame_ref; // coordinate frame of xyz_m
sequence<RadDetection, spatial::sensing::common::SZ_XL> dets;
Time stamp;
};
}; }; };
Lidar Extension
Lidar metadata, compressed point cloud frames, and detections. ROI semantics follow §2 Conventions for global normative rules; axes use the Sensing Common AXIS_CENTERS/AXIS_LINSPACE union encoding. See §2 Conventions for global normative rules.
// SPDX-License-Identifier: MIT
// SpatialDDS LiDAR (sensing.lidar) 1.5 — Extension profile
#ifndef SPATIAL_CORE_INCLUDED
#define SPATIAL_CORE_INCLUDED
#include "core.idl"
#endif
#ifndef SPATIAL_SENSING_COMMON_INCLUDED
#define SPATIAL_SENSING_COMMON_INCLUDED
#include "common.idl"
#endif
module spatial { module sensing { module lidar {
// Module identifier for discovery and schema registration
const string MODULE_ID = "spatial.sensing.lidar/1.5";
// Reuse Core + Sensing Common
typedef builtin::Time Time;
typedef spatial::core::PoseSE3 PoseSE3;
typedef spatial::core::BlobRef BlobRef;
typedef spatial::common::FrameRef FrameRef;
typedef spatial::sensing::common::Codec Codec;
typedef spatial::sensing::common::PayloadKind PayloadKind; // use BLOB_GEOMETRY for clouds
typedef spatial::sensing::common::SampleType SampleType; // optional for per-point extras
typedef spatial::sensing::common::Axis Axis;
typedef spatial::sensing::common::ROI ROI;
typedef spatial::sensing::common::StreamMeta StreamMeta;
typedef spatial::sensing::common::FrameHeader FrameHeader;
typedef spatial::sensing::common::FrameQuality FrameQuality;
typedef spatial::sensing::common::ROIRequest ROIRequest;
typedef spatial::sensing::common::ROIReply ROIReply;
// ROI bounds follow Sensing Common presence flags.
// Axis samples are encoded via the Sensing Common union (AXIS_CENTERS or AXIS_LINSPACE).
// Device + data model
enum LidarType {
@value(0) SPINNING_2D,
@value(1) MULTI_BEAM_3D,
@value(2) SOLID_STATE
};
enum CloudEncoding {
@value(0) PCD,
@value(1) PLY,
@value(2) LAS,
@value(3) LAZ,
@value(10) GLTF_DRACO,
@value(20) MPEG_PCC,
@value(255) CUSTOM_BIN
};
enum PointLayout { // intensity, ring, normal
@value(0) XYZ_I,
@value(1) XYZ_I_R,
@value(2) XYZ_I_R_N
};
// Static description — RELIABLE + TRANSIENT_LOCAL (late joiners receive the latest meta)
@extensibility(APPENDABLE) struct LidarMeta {
@key string stream_id;
StreamMeta base; // frame_ref, T_bus_sensor, nominal_rate_hz
LidarType type;
uint16 n_rings; // 0 if N/A
float min_range_m; float max_range_m;
float horiz_fov_deg_min; float horiz_fov_deg_max;
float vert_fov_deg_min; float vert_fov_deg_max;
// Default payload for frames (clouds ride as blobs)
CloudEncoding encoding; // PCD/PLY/LAS/LAZ/etc.
Codec codec; // ZSTD/LZ4/DRACO/…
PointLayout layout; // expected fields when decoded
string schema_version; // MUST be "spatial.sensing.lidar/1.5"
};
// Per-frame index — BEST_EFFORT + KEEP_LAST=1 (large payloads referenced via blobs)
@extensibility(APPENDABLE) struct LidarFrame {
@key string stream_id;
uint64 frame_seq;
FrameHeader hdr; // t_start/t_end, optional sensor_pose, blobs[]
CloudEncoding encoding; // may override meta
Codec codec; // may override meta
PointLayout layout; // may override meta
// Optional quick hints (for health/telemetry)
boolean has_average_range_m;
float average_range_m; // valid when has_average_range_m == true
boolean has_percent_valid;
float percent_valid; // valid when has_percent_valid == true (0..100)
boolean has_quality;
FrameQuality quality; // valid when has_quality == true
};
// Lightweight derivative for immediate fusion/tracking (optional)
@extensibility(APPENDABLE) struct LidarDetection {
spatial::common::Vec3 xyz_m;
float intensity;
uint16 ring;
float quality; // 0..1
};
// Detections topic — BEST_EFFORT
@extensibility(APPENDABLE) struct LidarDetectionSet {
@key string stream_id;
uint64 frame_seq;
FrameRef frame_ref; // coordinate frame of xyz_m
sequence<LidarDetection, spatial::sensing::common::SZ_SMALL> dets;
Time stamp;
};
}; }; };
AR + Geo Extension
Geo-fixed nodes for easy consumption by AR clients & multi-agent alignment.
// SPDX-License-Identifier: MIT
// SpatialDDS AR+Geo 1.5
#ifndef SPATIAL_CORE_INCLUDED
#define SPATIAL_CORE_INCLUDED
#include "core.idl"
#endif
module spatial {
module argeo {
const string MODULE_ID = "spatial.argeo/1.5";
typedef builtin::Time Time;
typedef spatial::core::PoseSE3 PoseSE3;
typedef spatial::core::GeoPose GeoPose;
typedef spatial::common::FrameRef FrameRef;
@extensibility(APPENDABLE) struct NodeGeo {
string map_id;
@key string node_id; // same id as core::Node
PoseSE3 pose; // local pose in map frame
GeoPose geopose; // corresponding global pose (WGS84/ECEF/ENU/NED)
spatial::core::CovMatrix cov; // covariance payload (COV_NONE when absent)
Time stamp;
FrameRef frame_ref; // local frame
string source_id;
uint64 seq;
uint64 graph_epoch;
};
}; // module argeo
};
Appendix E: Provisional Extension Examples
The following examples illustrate how provisional extensions might be used in practice. They are not normative and are provided only to show how Neural and Agent profiles could appear on the wire.
Example: Neural Extension (Provisional)
This example shows how a service might publish metadata for a Gaussian splat field covering part of a city block.
module spatial {
module examples {
@extensibility(APPENDABLE) struct NeuralExamplePlaceholder {
boolean dummy;
};
};
};
Example: Agent Extension (Provisional)
This example shows how an AI planner could issue a navigation task and later update its status.
module spatial {
module examples {
@extensibility(APPENDABLE) struct AgentExamplePlaceholder {
boolean dummy;
};
};
};
Appendix F: SpatialDDS URI Scheme (ABNF)
SpatialDDS defines a URI scheme for anchors, content, and services. The human-readable pattern is:
spatialdds://<authority>/<zone>/<rtype>/<rid>[;param][?query][#fragment]
- authority — a DNS name, case-insensitive.
- zone — a namespace identifier (letters, digits,
-,_,:). - rtype — resource type (for example
anchor,content,tileset,service,stream). - rid — resource identifier (letters, digits,
-,_). - param — optional
key=valueparameters separated by;. - query/fragment — follow RFC 3986 semantics.
ABNF
The grammar below reuses RFC 3986 terminals (ALPHA, DIGIT, unreserved, pct-encoded, query, fragment).
spatialdds-URI = "spatialdds://" authority "/" zone "/" rtype "/" rid
*( ";" param ) [ "?" query ] [ "#" fragment ]
authority = dns-name
dns-name = label *( "." label )
label = alnum [ *( alnum / "-" ) alnum ]
alnum = ALPHA / DIGIT
zone = 1*( zone-char )
zone-char = ALPHA / DIGIT / "-" / "_" / ":"
rtype = "anchor" / "content" / "tileset" / "service" / "stream"
rid = 1*( rid-char )
rid-char = ALPHA / DIGIT / "-" / "_"
param = pname [ "=" pvalue ]
pname = 1*( ALPHA / DIGIT / "-" / "_" )
pvalue = 1*( unreserved / pct-encoded / ":" / "@" / "." )
Notes
- Comparison rules: authority is case-insensitive; all other components are case-sensitive after percent-decoding.
- Reserved params:
v(revision identifier),ts(RFC 3339 timestamp). Others are vendor-specific. - Semantics: URIs without
;v=act as persistent identifiers (PID). With;v=they denote immutable revisions (RID). - Resolution: This appendix defines syntax only. Normative resolution behavior is defined in §7.5 (SpatialURI Resolution).
Examples
spatialdds://museum.example.org/hall1/anchor/01J9Q0A6KZ;v=12
spatialdds://openarcloud.org/zone:sf/tileset/city3d;v=3?lang=en
Appendix F.X Discovery Query Expression (Informative)
This appendix defines the boolean filter grammar used by the deprecated disco.CoverageQuery.expr. The language is case-sensitive,
UTF-8, and whitespace-tolerant. Identifiers target announced metadata fields (for example type, profile,
module_id); string literals are double-quoted and use a C-style escape subset.
expr = or-expr
or-expr = and-expr *( WS "||" WS and-expr )
and-expr = unary-expr *( WS "&&" WS unary-expr )
unary-expr = [ "!" WS ] primary
primary = comparison / "(" WS expr WS ")"
comparison = ident WS op WS value
op = "==" / "!="
ident = 1*( ALPHA / DIGIT / "_" / "." )
value = string
string = DQUOTE *( string-char ) DQUOTE
string-char= %x20-21 / %x23-5B / %x5D-10FFFF / escape
escape = "\\" ( DQUOTE / "\\" / "n" / "r" / "t" )
WS = *( SP / HTAB )
; Notes:
; - Identifiers address announced metadata fields (e.g., "type", "profile", "module_id").
; - Values are double-quoted strings; escapes follow C-style subset.
; - Operators: equality and inequality only. Boolean ops: &&, ||, unary !
; - Parentheses group precedence; otherwise, ! > && > ||
; - Comparisons are exact string matches; wildcards/globs are not supported.
; - Unknown identifiers evaluate to false in comparisons.
Appendix G: Frame Identifiers (Informative Reference)
SpatialDDS represents reference frames using the FrameRef structure:
The normative IDL for FrameRef resides in Appendix A (Core profile). This appendix is descriptive/informative and restates the usage guidance for reference frames.
struct FrameRef {
string uuid; // globally unique frame ID
string fqn; // normalized fully-qualified name, e.g. "earth-fixed/map/cam_front"
};
UUID Rules
uuidis authoritative for identity.fqnis an optional human-readable alias.- Implementations MUST treat
uuiduniqueness as the identity key. - Deployments SHOULD establish well-known UUIDs for standard roots (e.g.,
earth-fixed,map,body) and document them for participants.
Name and Hierarchy Rules
fqncomponents are slash-delimited.- Reserved roots include
earth-fixed,map,body,anchor,local. - A
FrameRefDAG MUST be acyclic.
Manifest References
Manifest entries that refer to frames MUST use a FrameRef object rather than raw strings. Each manifest MAY define local frame aliases resolvable by fqn.
Notes
Derived schemas (e.g. GeoPose, Anchors) SHALL refer to the Appendix A definition by reference and MUST NOT re-declare frame semantics. The conventions in §2.1 and the coverage/discovery rules in §3.3 reference this appendix for their frame requirements.
Appendix H: Operational Scenarios & AI World Model Ladder (Informative)
SpatialDDS supports a ladder of capabilities that begins with a single device mapping its surroundings and ends with AI systems consuming a live digital twin. Rather than enumerating isolated use cases, this section walks through one coherent flow — from local SLAM to shared anchors, to global positioning, to twin aggregation, and ultimately to AI world models.
Narrative Walkthrough: Local → Shared → Global → AI
- Local SLAM on-device. A headset, drone, or robot runs visual-inertial SLAM, generating keyframes and odometry updates in its private map frame.
- Sharing a pose graph. The device publishes
pg.nodeandpg.edgesamples (often as compact PoseGraphDelta bursts) onto the SpatialDDS bus so nearby peers or edge services can extend or optimize the map. - Anchors stabilize VIO. By discovering the Anchor Registry, the device resolves durable anchor URIs, retrieves their manifests, and fuses those priors to keep its VIO estimate drift-free.
- VPS provides a GeoPose. When the device needs a global fix, it queries a Visual Positioning Service (VPS). The VPS uses the shared pose graph plus anchor hints to return a
geo.fixsample that orients the local map in a world frame. - Digital twin aggregation. Twin backends subscribe to the same streams — pose graphs, anchors, geometry, and semantics — to maintain authoritative state for places, assets, and events.
- AI world models consume the twin. Analytics engines, planning agents, and foundation models read from the digital twin feeds, grounding their predictions and experiences in the synchronized world model.
The end result is a continuous chain: local sensing feeds a shared spatial data bus, anchors and VPS lift content into a global frame, digital twins maintain durable state, and AI systems reason over the fused model.
Example 1: Device Localization with SLAM and Anchors
A field technician’s headset begins indoors with self-contained SLAM. As it walks the “local → shared → global” ladder:
-
Publish local mapping. Each keyframe produces a PoseGraphDelta that streams to
pg.node/pg.edge. An excerpt looks like:{ "topic": "pg.node", "map_id": "map/facility-west", "node_id": "kf_0120", "pose": { "t": [0.12, 0.04, 1.53], "q": [0.99, 0.01, -0.02, 0.03] }, "frame_ref": { "uuid": "6c2333a0-8bfa-4b43-9ad9-7f22ee4b0001", "fqn": "facility-west/map" }, "stamp": { "sec": 1714070452, "nsec": 125000000 }, "source_id": "device/headset-17" } -
Discover anchors. Through
disco.service, the headset resolvesspatialdds://facility.example.org/west/anchor/loading-bay, fetches the manifest (Appendix A), and applies the returnedFrameTransformto pin itsmapframe to a surveyed ENU. -
Query VPS. When entering the yard, it uploads a
feat.keyframeset to VPS. The service matches against the shared pose graph plus anchor hints and responds with ageo.fixsample:{ "topic": "geo.fix", "anchor_id": "spatialdds://facility.example.org/west/anchor/loading-bay", "geopose": { "lat_deg": 37.79341, "lon_deg": -122.39412, "alt_m": 12.6, "q": [0.71, 0.00, 0.70, 0.05], "frame_kind": "ENU", "frame_ref": { "uuid": "fc6a63e0-99f7-445b-9e38-0a3c8a0c1234", "fqn": "earth-fixed" } }, "cov": [0.04, 0, 0, 0.04, 0, 0, 0, 0, 0.09] } -
Align to world. The headset fuses the GeoPose with its local pose graph, hands peers a globally aligned
geo.tf, and continues publishing drift-stable updates for others to use.
(See Appendix A for the full anchor and VPS manifests referenced here.)
Example 2: Updating and Using a Digital Twin
A facilities digital twin service subscribes to the same DDS topics to maintain a live model, while an AI analytics engine consumes the twin stream:
-
Twin ingestion. The backend listens to
pg.node,geo.anchor, andgeom.tile.*to reconcile a persistent state for each asset. When a door actuator changes, an operator microservice emits:{ "topic": "twin.state.update", "uri": "spatialdds://facility.example.org/west/content/door-17", "anchor_ref": "spatialdds://facility.example.org/west/anchor/loading-bay", "state": { "pose_local": { "t": [4.21, -1.02, 0.00], "q": [1, 0, 0, 0] }, "door_status": "open", "last_maintenance": "2024-03-22" }, "stamp": { "sec": 1714070520, "nsec": 0 } }
The twin registry validates the anchor reference, signs a manifest (Appendix A), and updates the canonical record.
- AI/analytics consumption. A predictive maintenance model subscribes to
twin.state.updateandsemantics.det.3d.setstreams. It flags abnormal open durations, publishing alerts and AR overlays back through SpatialDDS. - Experience feedback. AR clients render the AI insight, while robotics planners reuse the same URI-addressable twin objects for navigation.
(See Appendix A for extended twin manifests and analytics payloads.)
Why the Ladder Matters
This end-to-end chain demonstrates how SpatialDDS keeps local SLAM, shared anchors, VPS fixes, digital twins, and AI models in sync without bespoke gateways. Devices gain reliable localization, twins receive authoritative updates, and AI systems operate on a grounded, real-time world model.